Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Curr Biol ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39214087

RESUMO

Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.

2.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551961

RESUMO

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Assuntos
Células Amácrinas , Adesão Celular , Endocitose , PTEN Fosfo-Hidrolase , Retina , Via de Sinalização Wnt , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Retina/metabolismo , Camundongos , Células Amácrinas/metabolismo , Camundongos Knockout , Transporte Proteico , Proteínas Wnt/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética
3.
Intensive Crit Care Nurs ; 83: 103628, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38244252

RESUMO

OBJECTIVES: This prospective cohort study aimed to assess the predictive value of the Nurse Intuition Patient Deterioration Scale (NIPDS) combined with the National Early Warning Score (NEWS) for identifying serious adverse events in patients admitted to diverse hospital wards. RESEARCH METHODOLOGY/DESIGN: Data was collected between December 2020 and February 2021 in a 350-bed acute hospital near Brussels, Belgium. The study followed a prospective cohort design, employing NIPDS alongside NEWS for risk assessment. Patients were monitored for 24 h post-registration, with outcomes recorded. SETTING: The study was conducted in a hospital with a Rapid Response System (RRS) and electronic patient record wherein NEWS was routinely collected. Patients admitted to two medical, two surgical, and two geriatric wards were included. MAIN OUTCOME MEASURES: The primary outcome included death, urgent code calls, or unplanned ICU transfers within 24 h after NIPDS registration. The secondary outcome comprised rapid response team activations or changes in Do-Not-Resuscitate codes. RESULTS: In a cohort of 313 patients, 10/313 and 31/313 patients reached the primary and secondary outcome respectively. For the primary outcome, NIPDS had a sensitivity of 0.900 and specificity of 0.927, while NEWS had a sensitivity of 0.300 and specificity of 0.974. Decision Curve Analysis demonstrated that NIPDS provided more Net Benefit across various Threshold Probabilities. Combining NIPDS and NEWS showed potential for optimizing rapid response systems. Especially in resource-constrained settings, NIPDS could be used as a calling criterion. CONCLUSION: The NIPDS displayed strong predictive capabilities for adverse events. Integrating NIPDS into existing rapid response systems can objectify nurse intuition, enhancing patient safety. IMPLICATIONS FOR CLINICAL PRACTICE: The Nurse Intuition Patient Deterioration Scale (NIPDS) is a valuable tool for detecting patient deterioration. Implementing NIPDS alongside traditional scores such as NEWS can improve patient care and safety. The optimal NIPDS threshold to activate rapid response is ≥5.


Assuntos
Escore de Alerta Precoce , Humanos , Estudos Prospectivos , Feminino , Masculino , Idoso , Bélgica , Estudos de Coortes , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Deterioração Clínica , Adulto , Valor Preditivo dos Testes
4.
J Neurosci ; 43(49): 8348-8366, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37821230

RESUMO

The clustered protocadherins (cPcdhs) play a critical role in the patterning of several CNS axon and dendritic arbors, through regulation of homophilic self and neighboring interactions. While not explored, primary peripheral sensory afferents that innervate the epidermis may require similar constraints to convey spatial signals with appropriate fidelity. Here, we show that members of the γ-Pcdh (Pcdhγ) family are expressed in both adult sensory neuron axons and in neighboring keratinocytes that have close interactions during skin reinnervation. Adult mice of both sexes were studied. Pcdhγ knock-down either through small interfering RNA (siRNA) transduction or AAV-Cre recombinase transfection of adult mouse primary sensory neurons from floxed Pcdhγ mice was associated with a remarkable rise in neurite outgrowth and branching. Rises in outgrowth were abrogated by Rac1 inhibition. Moreover, AAV-Cre knock-down in Pcdhγ floxed neurons generated a rise in neurite self-intersections, and a robust rise in neighbor intersections or tiling, suggesting a role in sensory axon repulsion. Interestingly, preconditioned (3-d axotomy) neurons with enhanced growth had temporary declines in Pcdhγ and lessened outgrowth from Pcdhγ siRNA. In vivo, mice with local hindpaw skin Pcdhγ knock-down by siRNA had accelerated reinnervation by new epidermal axons with greater terminal branching and reduced intra-axonal spacing. Pcdhγ knock-down also had reciprocal impacts on keratinocyte density and nuclear size. Taken together, this work provides evidence for a role of Pcdhγ in attenuating outgrowth of sensory axons and their interactions, with implications in how new reinnervating axons following injury fare amid skin keratinocytes that also express Pcdhγ.SIGNIFICANCE STATEMENT The molecular mechanisms and potential constraints that govern skin reinnervation and patterning by sensory axons are largely unexplored. Here, we show that γ-protocadherins (Pcdhγ) may help to dictate interaction not only among axons but also between axons and keratinocytes as the former re-enter the skin during reinnervation. Pcdhγ neuronal knock-down enhances outgrowth in peripheral sensory neurons, involving the growth cone protein Rac1 whereas skin Pcdhγ knock-down generates rises in terminal epidermal axon growth and branching during re-innervation. Manipulation of sensory axon regrowth within the epidermis offers an opportunity to influence regenerative outcomes following nerve injury.


Assuntos
Regeneração Nervosa , Protocaderinas , Células Receptoras Sensoriais , Animais , Feminino , Masculino , Camundongos , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Protocaderinas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/metabolismo
5.
Neuron ; 111(1): 5-8, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36603550

RESUMO

Visual impairments in albinism result from decreased ipsilateral retinal projections. In this issue of Neuron, Slavi, Balasubramanian, and colleagues1 demonstrate how low CyclinD2 in the ciliary marginal zone perturbs generation of ipsilaterally projecting RGCs and that restoring CyclinD2 improves vision in albino mice.


Assuntos
Albinismo , Células Ganglionares da Retina , Animais , Camundongos , Retina , Visão Ocular , Vias Visuais
6.
Mol Brain ; 15(1): 85, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274179

RESUMO

Parvalbumin-expressing inhibitory neurons (PV-INs) are critical for the balance and fine-tuning of complex neuronal circuits. Studies of PV-IN biology require tools for their specific labeling, targeting and manipulation. Among these, the Cre/LoxP system is the most popular in mice, with the two commonly used PV-Cre lines cited over 5600 times. Here we report in the mouse cerebellar cortex that PV-Cre activity is not restricted to inhibitory neurons. Imaging of Cre-activated reporters demonstrated recombination in excitatory granule cells. We present evidence that PV-Cre recombination is: (1) spatially regulated and lobule specific; (2) detected in granule cells in the external and internal granule cell layers arising from strong, but transient Pvalb expression in progenitors between E13-E15; and (3) delayed in a subset of inhibitory interneurons, asynchronous with PV protein expression. Together, our findings establish the spatio-temporal patterns PV-Cre activation in the mouse cerebellum, raising considerations for conditional targeting of Pvalb-expressing inhibitory populations.


Assuntos
Interneurônios , Parvalbuminas , Animais , Camundongos , Parvalbuminas/metabolismo , Interneurônios/metabolismo , Neurônios/metabolismo , Cerebelo/metabolismo
7.
Nat Commun ; 13(1): 3433, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701402

RESUMO

Understanding how diverse neurons are assembled into circuits requires a framework for describing cell types and their developmental trajectories. Here we combine genetic fate-mapping, pseudotemporal profiling of morphogenesis, and dual morphology and RNA labeling to resolve the diversification of mouse cerebellar inhibitory interneurons. Molecular layer interneurons (MLIs) derive from a common progenitor population but comprise diverse dendritic-, somatic-, and axon initial segment-targeting interneurons. Using quantitative morphology from 79 mature MLIs, we identify two discrete morphological types and presence of extensive within-class heterogeneity. Pseudotime trajectory inference using 732 developmental morphologies indicate the emergence of distinct MLI types during migration, before reaching their final positions. By comparing MLI identities from morphological and transcriptomic signatures, we demonstrate the dissociation between these modalities and that subtype divergence can be resolved from axonal morphogenesis prior to marker gene expression. Our study illustrates the utility of applying single-cell methods to quantify morphology for defining neuronal diversification.


Assuntos
Cerebelo , Interneurônios , Animais , Interneurônios/fisiologia , Camundongos , Neurônios/fisiologia
8.
J Vis Exp ; (169)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33818570

RESUMO

Discovering mechanisms that pattern dendritic arbors requires methods to visualize, image, and analyze dendrites during development. The mouse retina is a powerful model system for the investigation of cell type-specific mechanisms of neuronal morphogenesis and connectivity. The organization and composition of retinal subtypes are well-defined, and genetic tools are available to access specific types during development. Many retinal cell types also constrain their dendrites and/or axons to narrow layers, which facilitates time-lapse imaging. Mouse retina explant cultures are well suited for live-cell imaging using confocal or multiphoton microscopy, but methods optimized for imaging dendrite dynamics with temporal and structural resolution are lacking. Presented here is a method to sparsely label and image the development of specific retinal populations marked by the Cre-Lox system. Commercially available adeno-associated viruses (AAVs) used here expressed membrane-targeted fluorescent proteins in a Cre-dependent manner. Intraocular delivery of AAVs in neonatal mice produces fluorescent labeling of targeted cell types by 4-5 days post-injection (dpi). The membrane fluorescent signals are detectable by confocal imaging and resolve fine branch structures and dynamics. High-quality videos spanning 2-4 h are acquired from imaging retinal flat-mounts perfused with oxygenated artificial cerebrospinal fluid (aCSF). Also provided is an image postprocessing pipeline for deconvolution and three-dimensional (3D) drift correction. This protocol can be used to capture several cellular behaviors in the intact retina and to identify novel factors controlling neurite morphogenesis. Many developmental strategies learned in the retina will be relevant for understanding the formation of neural circuits elsewhere in the central nervous system.


Assuntos
Retina/fisiologia , Imagem com Lapso de Tempo/métodos , Animais , Dendritos/fisiologia , Camundongos , Camundongos Transgênicos
9.
Curr Top Dev Biol ; 142: 233-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706919

RESUMO

Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.


Assuntos
Dendritos , Morfogênese
10.
J Neurosci ; 40(45): 8652-8668, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33060174

RESUMO

Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.


Assuntos
Caderinas/fisiologia , Morte Celular/fisiologia , Interneurônios/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Apoptose/genética , Proteínas Relacionadas a Caderinas , Caderinas/genética , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Eletroencefalografia , Feminino , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Doenças do Sistema Nervoso/etiologia , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/fisiologia , Convulsões/etiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/fisiologia
11.
Hum Mol Genet ; 29(5): 785-802, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31943018

RESUMO

Down syndrome (DS), caused by the triplication of human chromosome 21, leads to significant alterations in brain development and is a major genetic cause of intellectual disability. While much is known about changes to neurons in DS, the effects of trisomy 21 on non-neuronal cells such as astrocytes are poorly understood. Astrocytes are critical for brain development and function, and their alteration may contribute to DS pathophysiology. To better understand the impact of trisomy 21 on astrocytes, we performed RNA-sequencing on astrocytes from newly produced DS human induced pluripotent stem cells (hiPSCs). While chromosome 21 genes were upregulated in DS astrocytes, we found consistent up- and down-regulation of genes across the genome with a strong dysregulation of neurodevelopmental, cell adhesion and extracellular matrix molecules. ATAC (assay for transposase-accessible chromatin)-seq also revealed a global alteration in chromatin state in DS astrocytes, showing modified chromatin accessibility at promoters of cell adhesion and extracellular matrix genes. Along with these transcriptomic and epigenomic changes, DS astrocytes displayed perturbations in cell size and cell spreading as well as modifications to cell-cell and cell-substrate recognition/adhesion, and increases in cellular motility and dynamics. Thus, triplication of chromosome 21 is associated with genome-wide transcriptional, epigenomic and functional alterations in astrocytes that may contribute to altered brain development and function in DS.


Assuntos
Astrócitos/patologia , Adesão Celular , Síndrome de Down/patologia , Regulação da Expressão Gênica , Genoma Humano , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Neurais/patologia , Astrócitos/metabolismo , Diferenciação Celular , Movimento Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Transcriptoma
12.
J Leukoc Biol ; 105(6): 1131-1142, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30676680

RESUMO

Leukotriene B4 (LTB4 ) plays a prominent role in innate immunity as it induces phagocyte recruitment, the release of antimicrobial effectors, and as it potentiates the ingestion and killing of pathogens. In humans, LTB4 has a short half-life and is rapidly metabolized by leukocytes, notably into 20-OH- and 20-COOH-LTB4 by neutrophils. Although these LTB4 metabolites bind to the BLT1 receptor with high affinity, they activate neutrophils to a much lower extent than LTB4 . We thus postulated that LTB4 metabolites could dampen BLT1 -mediated responses, therefore limiting the impact of LTB4 on human neutrophil functions. We found that 20-OH-LTB4 and 20-COOH-LTB4 inhibited all of the LTB4 -mediated neutrophil responses we tested (migration, degranulation, leukotriene biosynthesis). The potencies of the different compounds at inhibiting LTB4 -mediated responses were 20-OH-LTB4  = CP 105,696 (BLT1 antagonist) > > 20-COOH-LTB4 ≥ resolvin E1 (RVE1 ). In contrast, the fMLP- and IL-8-mediated responses we tested were not affected by the LTB4 metabolites or RVE1 . 20-OH-LTB4 and 20-COOH-LTB4 also inhibited the LTB4 -mediated migration of human eosinophils but not that induced by 5-KETE. Moreover, using 20-COOH-LTB4 , LTB4 , and LTB4 -alkyne, we show that LTB4 is a chemotactic, rather than a chemokinetic factor for both human neutrophils and eosinophils. In conclusion, our data indicate that LTB4 metabolites and RVE1 act as natural inhibitors of LTB4 -mediated responses. Thus, preventing LTB4 ω-oxidation might result in increased innate immunity and granulocyte functions.


Assuntos
Eosinófilos/imunologia , Leucotrieno B4/imunologia , Neutrófilos/imunologia , Receptores do Leucotrieno B4/imunologia , Ácidos Araquidônicos/farmacologia , Benzopiranos/farmacologia , Ácidos Carboxílicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Eosinófilos/citologia , Humanos , Leucotrieno B4/farmacologia , Neutrófilos/citologia , Receptores do Leucotrieno B4/antagonistas & inibidores
13.
Diabetes ; 67(7): 1285-1296, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29496744

RESUMO

The current demographic shift toward an aging population has led to a robust increase in the prevalence of age-associated metabolic disorders. Recent studies have demonstrated that the etiology of obesity-related insulin resistance that develops with aging differs from that induced by high-calorie diets. Whereas the role of adaptive immunity in changes in energy metabolism driven by nutritional challenges has recently gained attention, its impact on aging remains mostly unknown. Here we found that the number of follicular B2 lymphocytes and expression of the B-cell-specific transcriptional coactivator OcaB increase with age in spleen and in intra-abdominal epididymal white adipose tissue (eWAT), concomitantly with higher circulating levels of IgG and impaired glucose homeostasis. Reduction of B-cell maturation and Ig production-especially that of IgG2c-by ablation of OcaB prevented age-induced glucose intolerance and insulin resistance and promoted energy expenditure by stimulating fatty acid utilization in eWAT and brown adipose tissue. Transfer of wild-type bone marrow in OcaB-/- mice replenished the eWAT B2-cell population and IgG levels, which diminished glucose tolerance, insulin sensitivity, and energy expenditure while increasing body weight gain in aged mice. Thus these findings demonstrate that upon aging, modifications in B-cell-driven adaptive immunity contribute to glucose intolerance and fat accretion.


Assuntos
Envelhecimento/metabolismo , Linfócitos B/fisiologia , Metabolismo Energético/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Obesidade , Transativadores/genética , Adolescente , Adulto , Idoso , Envelhecimento/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Epididimo , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/genética , Obesidade/imunologia , Obesidade/metabolismo , Adulto Jovem
14.
J Neurosci ; 38(11): 2713-2729, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29439167

RESUMO

The clustered protocadherins (Pcdhs) comprise 58 cadherin-related proteins encoded by three tandemly arrayed gene clusters, Pcdh-α, Pcdh-ß, and Pcdh-γ (Pcdha, Pcdhb, and Pcdhg, respectively). Pcdh isoforms from different clusters are combinatorially expressed in neurons. They form multimers that interact homophilically and mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, axonal tiling, and dendritic self-avoidance. Most studies have analyzed clusters individually. Here, we assessed functional interactions between Pcdha and Pcdhg clusters. To circumvent neonatal lethality associated with deletion of Pcdhgs, we used Crispr-Cas9 genome editing in mice to combine a constitutive Pcdha mutant allele with a conditional Pcdhg allele. We analyzed roles of Pcdhas and Pcdhgs in the retina and cerebellum from mice (both sexes) lacking one or both clusters. In retina, Pcdhgs are essential for survival of inner retinal neurons and dendritic self-avoidance of starburst amacrine cells, whereas Pcdhas are dispensable for both processes. Deletion of both Pcdha and Pcdhg clusters led to far more dramatic defects in survival and self-avoidance than Pcdhg deletion alone. Comparisons of an allelic series of mutants support the conclusion that Pcdhas and Pcdhgs function together in a dose-dependent and cell-type-specific manner to provide a critical threshold of Pcdh activity. In the cerebellum, Pcdhas and Pcdhgs also cooperate to mediate self-avoidance of Purkinje cell dendrites, with modest but significant defects in either single mutant and dramatic defects in the double mutant. Together, our results demonstrate complex patterns of redundancy between Pcdh clusters and the importance of Pcdh cluster diversity in postnatal CNS development.SIGNIFICANCE STATEMENT The formation of neural circuits requires diversification and combinatorial actions of cell surface proteins. Prominent among them are the clustered protocadherins (Pcdhs), a family of ∼60 neuronal recognition molecules. Pcdhs are encoded by three closely linked gene clusters called Pcdh-α, Pcdh-ß, and Pcdh-γ. The Pcdhs mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, and spatial patterning of axons and dendrites. Most studies to date have been limited to single clusters. Here, we used genome editing to assess interactions between Pcdh-α and Pcdh-γ gene clusters. We examined two regions of the CNS, the retina and cerebellum and show that the 14 α-Pcdhs and 22 γ-Pcdhs act synergistically to mediate neuronal survival and dendrite patterning.


Assuntos
Caderinas/genética , Sobrevivência Celular/genética , Dendritos/fisiologia , Neurônios Retinianos/fisiologia , Células Amácrinas/fisiologia , Animais , Axônios/fisiologia , Proteínas Relacionadas a Caderinas , Cerebelo/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/fisiologia , Neurogênese , Células de Purkinje/fisiologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Sinapses/fisiologia
15.
Semin Cell Dev Biol ; 69: 111-121, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28756270

RESUMO

Spatial patterns of neuronal connectivity are critical for neural circuit function and information processing. For many neuron types, the development of stereotyped dendritic and axonal territories involves reiterative contacts between neurites and successive re-calibration of branch outgrowth and directionality. Here I review emerging roles for members of the atypical cadherins (Fmi/Celsrs) and the clustered Protocadherins (Pcdhs) in neurite patterning. These cell-surface molecules have shared functions: they engage in homophilic recognition and mediate dynamic and contact-dependent interactions to establish reproducible and space-filling arborization patterns. As shown in genetic and molecular studies, the atypical cadherins and clustered Pcdhs serve in multiple contexts and signal diverse actions such as neurite repulsion or selective adhesion. In some cell types, they regulate the non-overlapping arrangement of branches achieved through homotypic interactions, such as in self-avoidance or tiling. In others, they promote dendritic complexity through cell-cell interactions. With critical roles in both the fine-scale arrangement of axonal and dendritic branching and the large-scale organization of axon tracts and neuronal networks, the atypical cadherins and clustered Pcdhs are key regulators of neural circuit assembly and function.


Assuntos
Caderinas/metabolismo , Neurônios/metabolismo , Animais , Caderinas/química , Humanos , Modelos Biológicos , Sinapses/metabolismo
16.
PLoS One ; 12(1): e0169804, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068410

RESUMO

LTB4 is an inflammatory lipid mediator mainly biosynthesized by leukocytes. Since its implication in inflammatory diseases is well recognized, many tools to regulate its biosynthesis have been developed and showed promising results in vitro and in vivo, but mixed results in clinical trials. Recently, the mTOR pathway component p70S6 kinase 1 (p70S6K1) has been linked to LTC4 synthase and the biosynthesis of cysteinyl-leukotrienes. In this respect, we investigated if p70S6K1 could also play a role in LTB4 biosynthesis. We thus evaluated the impact of the p70S6K1 inhibitors PF-4708671 and LY2584702 on LTB4 biosynthesis in human neutrophils. At a concentration of 10 µM, both compounds inhibited S6 phosphorylation, although neither one inhibited the thapsigargin-induced LTB4 biosynthesis, as assessed by the sum of LTB4, 20-OH-LTB4, and 20-COOH-LTB4. However, PF-4708671, but not LY2584702, inhibited the ω-oxidation of LTB4 into 20-OH-LTB4 by intact neutrophils and by recombinant CYP4F3A, leading to increased LTB4 levels. This was true for both endogenously biosynthesized and exogenously added LTB4. In contrast to that of 17-octadecynoic acid, the inhibitory effect of PF-4708671 was easily removed by washing the neutrophils, indicating that PF-4708671 was a reversible CYP4F3A inhibitor. At optimal concentration, PF-4708671 increased the half-life of LTB4 in our neutrophil suspensions by 7.5 fold, compared to 5 fold for 17-octadecynoic acid. Finally, Michaelis-Menten and Lineweaver-Burk plots indicate that PF-4708671 is a mixed inhibitor of CYP4F3A. In conclusion, we show that PF-4708671 inhibits CYP4F3A and prevents the ω-oxidation of LTB4 in cellulo, which might result in increased LTB4 levels in vivo.


Assuntos
Família 4 do Citocromo P450/antagonistas & inibidores , Imidazóis/farmacologia , Leucotrieno B4/metabolismo , Oxirredução/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Ativação Enzimática , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo
17.
Oncotarget ; 7(23): 33581-94, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27177221

RESUMO

Influenza and pneumonia are leading causes of death in elderly populations. With age, there is an increased inflammatory response and slower viral clearance during influenza infection which increases the risk of extended illness and mortality. Here we employ a preclinical murine model of influenza infection to examine the protective capacity of vaccination with influenza nucleoprotein (NP). While NP vaccination reduces influenza-induced lung inflammation in young mice, aged mice do not show this reduction, but are protected from influenza-induced mortality. Aged mice do make a significant amount of NP-specific IgG and adoptive transfer experiments show that NP antibody can protect from death but cannot reduce lung inflammation. Furthermore, young but not aged vaccinated mice generate significant numbers of NP-specific T cells following subsequent infection and few of these T cells are found in aged lungs early during infection. Importantly, aged CD4 T cells have a propensity to differentiate towards a T follicular helper (Tfh) phenotype rather than a T helper 1 (Th1) phenotype that predominates in the young. Since Th1 cells are important in viral clearance, reduced Th1 differentiation in the aged is critical and could account for some or all of the age-related differences in vaccine responses and infection resolution.


Assuntos
Envelhecimento/imunologia , Diferenciação Celular/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/imunologia , Proteínas do Core Viral/imunologia
18.
Sci Rep ; 6: 25051, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109638

RESUMO

T follicular helper (TFH) cell responses are essential for generation of protective humoral immunity during influenza infection. Aging has a profound impact on CD4(+) T cell function and humoral immunity, yet the impact of aging on antigen specific TFH responses remains unclear. Influenza specific TFH cells are generated in similar numbers in young and aged animals during infection, but TFH cells from aged mice exhibit significant differences, including reduced expression of ICOS and elevated production of IL-10 and IFNγ, which potentially impairs interaction with cognate B cells. Also, more influenza specific T cells in aged mice have a regulatory phenotype, which could contribute to the impaired TFH function. Adoptive transfer studies with young T cells demonstrated that TGF-ß1 in the aged environment can drive increased regulatory T cell accumulation. Aging and the aged environment thus impact antigen specific TFH cell function and formation, which contribute to reduced protective humoral responses.


Assuntos
Fatores Etários , Imunidade Humoral/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Interleucinas/imunologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Antígenos , Linfócitos B , Proteína Coestimuladora de Linfócitos T Induzíveis , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/virologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/virologia , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo
19.
Annu Rev Cell Dev Biol ; 31: 741-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26422333

RESUMO

The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;


Assuntos
Dendritos/fisiologia , Animais , Pareamento Cromossômico/fisiologia , Humanos
20.
J Leukoc Biol ; 97(6): 1049-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877930

RESUMO

2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.


Assuntos
Ácidos Araquidônicos/metabolismo , Células Dendríticas/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Metabolismo dos Lipídeos/imunologia , Linfócitos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Animais , Ácidos Araquidônicos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Endocanabinoides/imunologia , Glicerídeos/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Hepatopatias/imunologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Linfócitos/imunologia , Linfócitos/patologia , Síndrome Metabólica/imunologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia , Dor/imunologia , Dor/metabolismo , Dor/patologia , Ácidos Fosfatídicos/imunologia , Ácidos Fosfatídicos/metabolismo , Alcamidas Poli-Insaturadas/imunologia , Receptores de Canabinoides/imunologia , Receptores de Canabinoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA