Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neuroendocrinol ; : e13397, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659185

RESUMO

The neurohormone oxytocin (OT) has become a major target for the development of novel therapeutic strategies to treat psychiatric disorders such as autism spectrum disorder because of its integral role in governing many facets of mammalian social behavior. Whereas extensive work in rodents has produced much of our knowledge of OT, we lack basic information about its neurobiology in primates making it difficult to interpret the limited effects that OT manipulations have had in human patients. In fact, previous studies have revealed only limited OT fibers in primate brains. Here, we investigated the OT connectome in marmoset using immunohistochemistry, and mapped OT fibers throughout the brains of adult male and female marmoset monkeys. We found extensive OT projections reaching limbic and cortical areas that are involved in the regulation of social behaviors, such as the amygdala, the medial prefrontal cortex, and the basal ganglia. The pattern of OT fibers observed in marmosets is notably similar to the OT connectomes described in rodents. Our findings here contrast with previous results by demonstrating a broad distribution of OT throughout the marmoset brain. Given the prevalence of this neurohormone in the primate brain, methods developed in rodents to manipulate endogenous OT are likely to be applicable in marmosets.

2.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260560

RESUMO

The neurohormone oxytocin (OT) has become a major target for the development of novel therapeutic strategies to treat psychiatric disorders such as autism spectrum disorder because of its integral role in governing many facets of mammalian social behavior. Whereas extensive work in rodents has produced much of our knowledge of OT, we lack basic information about its neurobiology in primates making it difficult to interpret the limited effects that OT manipulations have had in human patients. In fact, previous studies have revealed only limited OT fibers in primate brains. Here, we investigated the OT connectome in marmoset using immunohistochemistry, and mapped OT fibers throughout the brains of adult male and female marmoset monkeys. We found extensive OT projections reaching limbic and cortical areas that are involved in the regulation of social behaviors, such as the amygdala, the medial prefrontal cortex and the basal ganglia. The pattern of OT fibers observed in marmosets is notably similar to the OT connectomes described in rodents. Our findings here contrast with previous results by demonstrating a broad distribution of OT throughout the marmoset brain. Given the prevalence of this neurohormone in the primate brain, methods developed in rodents to manipulate endogenous OT are likely to be applicable in marmosets.

3.
Mol Psychiatry ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052983

RESUMO

Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.

4.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430038

RESUMO

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Assuntos
Encéfalo , Callithrix , Humanos , Animais , Recém-Nascido , Chlorocebus aethiops , Macaca mulatta/genética , Callithrix/genética , Encéfalo/fisiologia , Técnicas de Transferência de Genes , Neurônios , Vetores Genéticos/genética
5.
Neuron ; 111(11): 1795-1811.e7, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023755

RESUMO

Neurons in the prefrontal cortex (PFC) can provide top-down regulation of sensory-affective experiences such as pain. Bottom-up modulation of sensory coding in the PFC, however, remains poorly understood. Here, we examined how oxytocin (OT) signaling from the hypothalamus regulates nociceptive coding in the PFC. In vivo time-lapse endoscopic calcium imaging in freely behaving rats showed that OT selectively enhanced population activity in the prelimbic PFC in response to nociceptive inputs. This population response resulted from the reduction of evoked GABAergic inhibition and manifested as elevated functional connectivity involving pain-responsive neurons. Direct inputs from OT-releasing neurons in the paraventricular nucleus (PVN) of the hypothalamus are crucial to maintaining this prefrontal nociceptive response. Activation of the prelimbic PFC by OT or direct optogenetic stimulation of oxytocinergic PVN projections reduced acute and chronic pain. These results suggest that oxytocinergic signaling in the PVN-PFC circuit constitutes a key mechanism to regulate cortical sensory processing.


Assuntos
Dor Crônica , Núcleo Hipotalâmico Paraventricular , Ratos , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Ocitocina/metabolismo , Hipotálamo/metabolismo , Córtex Pré-Frontal/metabolismo
6.
Res Sq ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36789432

RESUMO

Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.

7.
Nat Commun ; 14(1): 1066, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828816

RESUMO

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.


Assuntos
Neuralgia , Ocitocina , Ratos , Masculino , Feminino , Animais , Ocitocina/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Neurônios/metabolismo , Analgésicos/farmacologia , Neuralgia/metabolismo
8.
J Neuroendocrinol ; 34(7): e13166, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35657290

RESUMO

Oxytocinergic actions within the hippocampal CA2 are important for neuromodulation, memory processing and social recognition. However, the source of the OTergic innervation, the cellular targets expressing the OT receptors (OTRs) and whether the PVN-to-CA2 OTergic system is altered during heart failure (HF), a condition recently associated with cognitive and mood decline, remains unknown. Using immunohistochemistry along with retrograde monosynaptic tracing, RNAscope and a novel OTR-Cre rat line, we show that the PVN (but not the supraoptic nucleus) is an important source of OTergic innervation to the CA2. These OTergic fibers were found in many instances in close apposition to OTR expressing cells within the CA2. Interestingly, while only a small proportion of neurons were found to express OTRs (~15%), this expression was much more abundant in CA2 astrocytes (~40%), an even higher proportion that was recently reported for astrocytes in the central amygdala. Using an established ischemic rat heart failure (HF) model, we found that HF resulted in robust changes in the PVN-to-CA2 OTergic system, both at the source and target levels. Within the PVN, we found an increased OT immunoreactivity, along with a diminished OTR expression in PVN neurons. Within the CA2 of HF rats, we observed a blunted OTergic innervation, along with a diminished OTR expression, which appeared to be restricted to CA2 astrocytes. Taken together, our studies highlight astrocytes as key cellular targets mediating OTergic PVN inputs to the CA2 hippocampal region. Moreover, they provide the first evidence for an altered PVN-to-CA2 OTergic system in HF rats, which could potentially contribute to previously reported cognitive and mood impairments in this animal model.


Assuntos
Insuficiência Cardíaca , Receptores de Ocitocina , Animais , Astrócitos/metabolismo , Insuficiência Cardíaca/metabolismo , Hipocampo/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Receptores de Ocitocina/metabolismo
9.
STAR Protoc ; 3(1): 101032, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34977678

RESUMO

Here, we present a step-by-step protocol to target, record, and manipulate the activity of oxytocin neurons in awake rats. The protocol includes a procedure to record the activity of oxytocin neurons from awake and socially interacting rats using opto-electrodes for simultaneous electrophysiological recording and virally based cell-type-specific opto-tagging with Channelrhodopsin 2. Furthermore, we illustrate a procedure for optically guided implantation of optic fiber and imaging of oxytocin neuron population activity expressing calcium indicator GCaMP6s with the fiber photometry technique. For complete details on the use and execution of this protocol, please refer to Tang et al., 2020.


Assuntos
Neurônios , Ocitocina , Animais , Eletrodos , Tecnologia de Fibra Óptica/métodos , Neurônios/fisiologia , Fotometria/métodos , Ratos
10.
Sci Rep ; 11(1): 22541, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795340

RESUMO

Hypothalamic oxytocin (OXT) and arginine-vasopressin (AVP) neurons have been at the center of several physiological and behavioral studies. Advances in viral vector biology and the development of transgenic rodent models have allowed for targeted gene expression to study the functions of specific cell populations and brain circuits. In this study, we compared the efficiency of various adeno-associated viral vectors in these cell populations and demonstrated that none of the widely used promoters were, on their own, effective at driving expression of a down-stream fluorescent protein in OXT or AVP neurons. As anticipated, the OXT promoter could efficiently drive gene expression in OXT neurons and this efficiency is solely attributed to the promoter and not the viral serotype. We also report that a dual virus approach using an OXT promoter driven Cre recombinase significantly improved the efficiency of viral transduction in OXT neurons. Finally, we demonstrate the utility of the OXT promoter for conducting functional studies on OXT neurons by using an OXT specific viral system to record neural activity of OXT neurons in lactating female rats across time. We conclude that extreme caution is needed when employing non-neuron-specific viral approaches/promoters to study neural populations within the paraventricular nucleus of the hypothalamus.


Assuntos
Lactação/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Ocitocina/metabolismo , Regiões Promotoras Genéticas , Animais , Animais Geneticamente Modificados , Arginina Vasopressina/metabolismo , Eletrofisiologia , Feminino , Hipotálamo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Front Neural Circuits ; 15: 688234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194303

RESUMO

Oxytocin (OT) is a neuropeptide produced by hypothalamic neurons and is known to modulate social behavior among other functions. Several experiments have shown that OT modulates neuronal activity in many brain areas, including sensory cortices. OT neurons thus project axons to various cortical and subcortical structures and activate neuronal subpopulations to increase the signal-to-noise ratio, and in turn, increases the saliency of social stimuli. Less is known about the origin of inputs to OT neurons, but recent studies show that cells projecting to OT neurons are often located in regions where the OT receptor (OTR) is expressed. Thus, we propose the existence of reciprocal connectivity between OT neurons and extrahypothalamic OTR neurons to tune OT neuron activity depending on the behavioral context. Furthermore, the latest studies have shown that OTR-expressing neurons located in social brain regions also project to other social brain regions containing OTR-expressing neurons. We hypothesize that OTR-expressing neurons across the brain constitute a common network coordinated by OT.


Assuntos
Ocitocina , Receptores de Ocitocina , Retroalimentação , Neurônios , Comportamento Social
13.
Nat Neurosci ; 24(4): 529-541, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589833

RESUMO

Oxytocin (OT) orchestrates social and emotional behaviors through modulation of neural circuits. In the central amygdala, the release of OT modulates inhibitory circuits and, thereby, suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function and pharmacological approaches, we demonstrate that a morphologically distinct subpopulation of astrocytes expresses OT receptors and mediates anxiolytic and positive reinforcement effects of OT in the central amygdala of mice and rats. The involvement of astrocytes in OT signaling challenges the long-held dogma that OT acts exclusively on neurons and highlights astrocytes as essential components for modulation of emotional states under normal and chronic pain conditions.


Assuntos
Astrócitos/metabolismo , Núcleo Central da Amígdala/metabolismo , Emoções/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/farmacologia , Ratos , Ratos Wistar , Receptores de Ocitocina/metabolismo
14.
Autism Res ; 13(11): 1843-1855, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32864880

RESUMO

Central serotonin is an important molecular pathway, involved in the regulation of social behavior and gray matter volume (GMV). In men with autism spectrum disorders (ASD), the serotonergic system and the GMV have been found disrupted. Here, we investigated the relation between serotonin, GMV, and social personality in men with typical development (TD) and in men with ASD. We combined anatomical magnetic resonance imaging, Positron emission tomography scan with 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine radioligand and revised NEO personality inventory personality questionnaire to examine the association between serotonin 1A receptor (5-HT1A R) binding potential, GMV and social personality in 24 adult male TD subjects and 18 male men with ASD. In both groups, we found a positive correlation between 5-HT1A R binding potential and GMV in a region dependent manner. In the TD group, we observed a negative correlation between 5-HT1A R and GMV in the left and right posterior putamen. 5HT1A R binding and GMV in the putamen further correlated with social personality scores in the TD group. None of these associations were found in men with ASD, although no differences were observed for 5-HT1A R concentration among the two groups. Our findings point to a deregulation of 5-HT1A R density in the striatum of men with ASD, a failure that might contribute to their social disturbances. Serotonin is suspected to be involved in the pathophysiology of autism. We provide evidence for a role of serotonin 1A receptor in social behavior through a specific regulation of GMV in the putamen region in neurotypical subjects but not in men with autism. This suggests a potential impairment of the serotonergic system in men with autism which may contribute to patients' social disturbances. Our findings suggest further investigation on the role of serotonin 1A receptor and its activity in the striatum to regulate social behavior. Autism Res 2020, 13: 1843-1855. © 2020 International Society for Autism Research and Wiley Periodicals LLC LAY SUMMARY: Serotonin is suspected to be involved in the pathophysiology of autism. We provide evidence for a role of serotonin 1A receptor in social behavior through a specific regulation of gray matter volume in the putamen region in neurotypical subjects but not in men with autism. This suggests a potential impairment of the serotonergic system in men with autism which may contribute to patients' social disturbances. Our findings suggest further investigation on the role of serotonin 1A receptor and its activity in the striatum to regulate social behavior.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo , Feminino , Substância Cinzenta , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Receptor 5-HT1A de Serotonina
15.
Nat Neurosci ; 23(9): 1125-1137, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719563

RESUMO

Oxytocin (OT) is a great facilitator of social life but, although its effects on socially relevant brain regions have been extensively studied, OT neuron activity during actual social interactions remains unexplored. Most OT neurons are magnocellular neurons, which simultaneously project to the pituitary and forebrain regions involved in social behaviors. In the present study, we show that a much smaller population of OT neurons, parvocellular neurons that do not project to the pituitary but synapse onto magnocellular neurons, is preferentially activated by somatosensory stimuli. This activation is transmitted to the larger population of magnocellular neurons, which consequently show coordinated increases in their activity during social interactions between virgin female rats. Selectively activating these parvocellular neurons promotes social motivation, whereas inhibiting them reduces social interactions. Thus, parvocellular OT neurons receive particular inputs to control social behavior by coordinating the responses of the much larger population of magnocellular OT neurons.


Assuntos
Comportamento Animal/fisiologia , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Comportamento Social , Animais , Feminino , Ratos , Ratos Wistar , Tato , Percepção do Tato/fisiologia
16.
Curr Biol ; 29(12): 1938-1953.e6, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31178317

RESUMO

Recognition of other's emotions influences the way social animals interact and adapt to the environment. The neuropeptide oxytocin (OXT) has been implicated in different aspects of emotion processing. However, the role of endogenous OXT brain pathways in the social response to different emotional states in conspecifics remains elusive. Here, using a combination of anatomical, genetic, and chemogenetic approaches, we investigated the contribution of endogenous OXT signaling in the ability of mice to discriminate unfamiliar conspecifics based on their emotional states. We found that OXTergic projections from the paraventricular nucleus of the hypothalamus (PVN) to the central amygdala (CeA) are crucial for the discrimination of both positively and negatively valenced emotional states. In contrast, blocking PVN OXT release into the nucleus accumbens, prefrontal cortex, and hippocampal CA2 did not alter this emotion discrimination. Furthermore, silencing each of these PVN OXT pathways did not influence basic social interaction. These findings were further supported by the demonstration that virally mediated enhancement of OXT signaling within the CeA was sufficient to rescue emotion discrimination deficits in a genetic mouse model of cognitive liability. Our results indicate that CeA OXT signaling plays a key role in emotion discrimination both in physiological and pathological conditions.


Assuntos
Núcleo Central da Amígdala/metabolismo , Emoções , Camundongos/fisiologia , Ocitocina/metabolismo , Reconhecimento Psicológico , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos/psicologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Hipotalâmico Paraventricular/metabolismo
17.
Neuron ; 103(1): 133-146.e8, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31104950

RESUMO

Oxytocin (OT) release by axonal terminals onto the central nucleus of the amygdala exerts anxiolysis. To investigate which subpopulation of OT neurons contributes to this effect, we developed a novel method: virus-delivered genetic activity-induced tagging of cell ensembles (vGATE). With the vGATE method, we identified and permanently tagged a small subpopulation of OT cells, which, by optogenetic stimulation, strongly attenuated contextual fear-induced freezing, and pharmacogenetic silencing of tagged OT neurons impaired context-specific fear extinction, demonstrating that the tagged OT neurons are sufficient and necessary, respectively, to control contextual fear. Intriguingly, OT cell terminals of fear-experienced rats displayed enhanced glutamate release in the amygdala. Furthermore, rats exposed to another round of fear conditioning displayed 5-fold more activated magnocellular OT neurons in a novel environment than a familiar one, possibly for a generalized fear response. Thus, our results provide first evidence that hypothalamic OT neurons represent a fear memory engram.


Assuntos
Medo/fisiologia , Hipotálamo/fisiologia , Memória/fisiologia , Ocitocina/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Meio Ambiente , Extinção Psicológica/fisiologia , Medo/psicologia , Feminino , Reação de Congelamento Cataléptica , Inativação Gênica , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Optogenética , Ocitocina/genética , Ratos , Ratos Wistar
18.
Cell Tissue Res ; 375(1): 279-286, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30069597

RESUMO

The discovery of prosocial effects of oxytocin (OT) opened new directions for studying neuropeptide effects on the human brain. However, despite obvious effects of OT on neural responses as reported in numerous studies, other peptides have received less attention. Therefore, we will only briefly summarize evidence of OT effects on human functional magnetic resonance imaging (fMRI) and primarily focus on OT's sister neuropeptide arginine-vasopressin by presenting our own coordinated-based activation likelihood estimation meta-analysis. In addition, we will recapitulate rather limited data on few other neuropeptides, including pharmacological and genetic fMRI studies. Finally, we will review experiments with external neuropeptide administration to patients afflicted with mental disorders, such as autism or schizophrenia. In conclusion, despite remaining uncertainty regarding the penetrance of exogenous neuropeptides through the blood-brain barrier, it is evident that neuropeptides simultaneously influence the activity of limbic and cortical areas, indicating that these systems have a good potential for therapeutic drug development. Hence, this calls for further systematic studies of a wide spectrum of known and less known neuropeptides to understand their normal function in the brain and, subsequently, to tackle their potential contribution for pathophysiological mechanisms of mental disorders.


Assuntos
Encéfalo/fisiologia , Imageamento Tridimensional , Neuropeptídeos/metabolismo , Animais , Humanos
19.
Cereb Cortex ; 28(12): 4169-4178, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045584

RESUMO

Oxytocin (OT), a neuropeptide involved in affiliation has been shown to enhance social skills in patients with autism spectrum disorders (ASD). Nevertheless, OT improvements seem ephemeral. Animal research has demonstrated OT action on serotonin (5-HT), an interaction that we also found in the healthy human brain. Whether such synaptic interplay also occurs in ASD patients is unknown. To address this issue, we mapped the effects of intranasal OT on 5-HT in 18 patients with ASD and 24 healthy controls (HC) in a double blind, placebo controlled, within subject PET-scan experiment. Each participant underwent two scans: baseline and spray (OT or placebo). Using the radiotracer [18 F]MPPF, marking the 5-HT 1A receptor (5-HT1AR), we measured MPPF-Binding Potential (BP) as an index of OT-induced serotonin functional modulation. At baseline ASD patients did not differ from controls for 5-HT1AR concentration and distribution. However, while OT significantly increased MPPF BP in several brain regions of HC, no changes were observed in the ASD group. Serotonin serum concentration analysis corroborated these results. Our findings suggest a disturbed OT-serotonin interaction in autism. This may limit the potential benefits of OT in these patients and open the ways to investigate combined OT-serotonin treatments.


Assuntos
Transtorno do Espectro Autista/metabolismo , Encéfalo/efeitos dos fármacos , Ocitocina/administração & dosagem , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/sangue , Transmissão Sináptica/efeitos dos fármacos , Administração Intranasal , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/metabolismo , Método Duplo-Cego , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Adulto Jovem
20.
Sci Rep ; 7(1): 17222, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222505

RESUMO

Oxytocin (OT) concentration in the blood is considered to be a marker of its action in the brain. However, two problems have emerged when measuring OT level in the blood. First, it is unclear whether different methods of assessment lead to similar OT values. Second, it is unclear if plasma OT concentrations is informative on what OT does in the brain. To clarify these issues, we collected cerebrospinal fluid (CSF) from the brain ventricle of 25 patients during surgery to compare with plasma OT after simultaneous blood withdrawal. Additionally, we collected 12 CSF and blood samples from non-human primates while awake or under anaesthesia. We used four methods to assay OT concentrations: Commercial EIA with/without extraction, laboratory developed EIA with filtration and RIA with extraction. Three of these methods showed a positive correlation between plasma and CSF OT, suggesting a link between plasma and central OT, at least under specific testing conditions. However, none of the methods correlated to each other. Our results show major disagreements among methods used here to measure peripheral and brain OT and therefore they call for more caution when plasma OT is taken as a marker of central OT.


Assuntos
Análise Química do Sangue/métodos , Ocitocina/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA