RESUMO
While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers, and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e. performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.
Assuntos
Pesquisa Biomédica/normas , Avaliação Pré-Clínica de Medicamentos/normas , Projetos de Pesquisa/normas , Comportamento Cooperativo , Confiabilidade dos Dados , Difusão de Inovações , Europa (Continente) , Humanos , Comunicação Interdisciplinar , Controle de Qualidade , Melhoria de Qualidade , Participação dos InteressadosRESUMO
Thousands of pharmacology experiments are performed each day, generating hundreds of drug discovery programs, scientific publications, grant submissions, and other efforts. Discussions of the low reproducibility and robustness of some of this research have led to myriad efforts to increase data quality and thus reliability. Across the scientific ecosystem, regardless of the extent of concerns, debate about solutions, and differences among goals and practices, scientists strive to provide reliable data to advance frontiers of knowledge. Here we share our experience of current practices in nonclinical neuroscience research across biopharma and academia, examining context-related factors and behaviors that influence ways of working and decision-making. Drawing parallels with the principles of evidence-based medicine, we discuss ways of improving transparency and consider how to better implement best research practices. We anticipate that a shared framework of scientific rigor, facilitated by training, enabling tools, and enhanced data sharing, will draw the conversation away from data unreliability or lack of reproducibility toward the more important discussion of how to generate data that advances knowledge and propels innovation.
Assuntos
Ecossistema , Medicina Baseada em Evidências , Disseminação de Informação , Reprodutibilidade dos TestesRESUMO
Synapse impairment is thought to be an early event in Alzheimer's disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression. To gauge the translational value of Ng as a biomarker, we developed a new, highly sensitive, digital enzyme-linked immunosorbent assay (ELISA) on the Simoa platform to measure Ng in both mouse and human CSF. We investigated and confirmed that Ng levels are increased in the CSF of patients with AD compared to controls. In addition, we explored how Ng is altered in the brain and CSF of transgenic mice that display progressive neuronal loss and synaptic degeneration following the induction of p25 overexpression. In this model, we found that Ng levels increased in CSF when neurodegeneration was induced, peaking after 2â¯weeks, while they decreased in brain. Our data suggest that CSF Ng is a biomarker of synaptic degeneration with translational value.
Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática/métodos , Neurogranina/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Degeneração Neural/líquido cefalorraquidiano , Degeneração Neural/diagnóstico , Sinapses/patologiaRESUMO
Over the last six decades, voltage-gated sodium (Nav ) channels have attracted a great deal of scientific and pharmaceutical interest, driving fundamental advances in both biology and technology. The structure and physiological function of these channels have been extensively studied; clinical and genetic data have uncovered their implication in diseases such as epilepsy, arrhythmias, and pain, bringing them into focus as current and future drug targets. While different techniques have been established to record the activity of Nav channels, proper determination of their properties still presents serious challenges, depending upon the experimental conditions and the desired subtype of channel to be characterized. The aim of this unit is to review the characteristics of Nav channels, their properties, the cells in which they can be studied, and the currently available techniques. Topics covered include the determination of Nav -channel biophysical properties as well as the use of toxins to discriminate between subtypes using electrophysiological or optical methods. Perspectives on the development of high-throughput screening assays with their advantages and limitations are also discussed to allow a better understanding of the challenges encountered in voltage-gated sodium channel preclinical drug discovery. © 2016 by John Wiley & Sons, Inc.