Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39131402

RESUMO

Beta-arrestins (ßarrs) are key regulators and transducers of G-protein coupled receptor signaling; however, little is known of how ßarrs communicate with their downstream effectors. Here, we use cryo-electron microscopy to elucidate how ßarr1 recruits and activates non-receptor tyrosine kinase Src. ßarr1 binds Src SH3 domain via two distinct sites: a polyproline site in the N-domain and a non-proline site in the central crest region. At both sites ßarr1 interacts with the aromatic surface of SH3 which is critical for Src autoinhibition, suggesting that ßarr1 activates Src by SH3 domain displacement. Binding of SH3 to the central crest region induces structural rearrangements in the ß-strand V, finger, and middle loops of ßarr1 and interferes with ßarr1 coupling to the receptor core potentially impacting receptor desensitization and downstream signaling.

2.
Cell Chem Biol ; 31(8): 1388-1390, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151404

RESUMO

Since the first award in 1901, the Nobel Prize has come to signify the pinnacle of scientific achievement. In this Voices piece in the August special issue of Cell Chemical Biology entitled "Bridging chemistry and biology," we ask Nobel laureates to reflect on the impact the prize had on them. We learn how it affected their life or work, their outlook on science, the lessons learned, and their advice for the next generation of scientists.


Assuntos
Química , Prêmio Nobel , Química/história , História do Século XX , Humanos , História do Século XXI
3.
Circ Res ; 135(1): 174-197, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900852

RESUMO

GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and ß-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of ß-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.


Assuntos
Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Transdução de Sinais , Descoberta de Drogas , História do Século XXI , História do Século XX
4.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38586060

RESUMO

G protein coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The ß2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a new Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways.

5.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426490

RESUMO

Radioligand binding techniques facilitated the identification and study of G-protein coupled receptors that now represent the largest class of targets for therapeutic drugs.


Assuntos
Receptores Acoplados a Proteínas G , Ensaio Radioligante/métodos , Receptores Acoplados a Proteínas G/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844230

RESUMO

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Assuntos
Arrestinas , Transdução de Sinais , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Regulação Alostérica , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Fosforilação , beta-Arrestina 2/metabolismo
8.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432742

RESUMO

Asthma is a chronic inflammatory disease associated with episodic airway narrowing. Inhaled ß2-adrenergic receptor (ß2AR) agonists (ß2-agonists) promote - with limited efficacy - bronchodilation in asthma. All ß2-agonists are canonical orthosteric ligands that bind the same site as endogenous epinephrine. We recently isolated a ß2AR-selective positive allosteric modulator (PAM), compound-6 (Cmpd-6), which binds outside of the orthosteric site and modulates orthosteric ligand functions. With the emerging therapeutic potential of G-protein coupled receptor allosteric ligands, we investigated the impact of Cmpd-6 on ß2AR-mediated bronchoprotection. Consistent with our findings using human ß2ARs, Cmpd-6 allosterically potentiated ß2-agonist binding to guinea pig ß2ARs and downstream signaling of ß2ARs. In contrast, Cmpd-6 had no such effect on murine ß2ARs, which lack a crucial amino acid in the Cmpd-6 allosteric binding site. Importantly, Cmpd-6 enhanced ß2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in guinea pig lung slices, but - in line with the binding studies - not in mice. Moreover, Cmpd-6 robustly potentiated ß2 agonist-mediated bronchoprotection against allergen-induced airway constriction in lung slices obtained from a guinea pig model of allergic asthma. Cmpd-6 similarly enhanced ß2 agonist-mediated bronchoprotection against methacholine-induced bronchoconstriction in human lung slices. Our results highlight the potential of ß2AR-selective PAMs in the treatment of airway narrowing in asthma and other obstructive respiratory diseases.


Assuntos
Asma , Humanos , Camundongos , Animais , Cobaias , Cloreto de Metacolina/farmacologia , Cloreto de Metacolina/uso terapêutico , Ligantes , Asma/tratamento farmacológico , Asma/genética , Asma/complicações , Pulmão/metabolismo , Sítios de Ligação , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
9.
PLoS One ; 18(3): e0283477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961836

RESUMO

G protein-coupled receptors (GPCRs) regulate cellular signaling pathways by coupling to two classes of transducers: heterotrimeric G proteins and ß-arrestins. [Sarcosine1Ile4Ile8]-angiotensin II (SII), an analog of the endogenous ligand angiotensin II (AngII) for the angiotensin II type 1 receptor (AT1R), fails to activate G protein in physiologically relevant models. Despite this, SII and several derivatives induce cellular signaling outcomes through ß-arrestin-2-dependent mechanisms. However, studies reliant on exogenous AT1R overexpression indicate that SII is a partial agonist for G protein signaling and lacks ß-arrestin-exclusive functional specificity. We investigated this apparent discrepancy by profiling changes in functional specificity at increasing expression levels of AT1R using a stably integrated tetracycline-titratable expression system stimulated with AngII, SII, and four other AngII analogs displaying different signaling biases. Unbiased and G protein-biased ligands activated dose-dependent calcium responses at all tested receptor concentrations. In contrast, ß-arrestin-biased ligands induced dose-dependent calcium signaling only at higher AT1R overexpression levels. Using inhibitors of G proteins, we demonstrated that both Gi and Gq/11 mediated overexpression-dependent calcium signaling by ß-arrestin-biased ligands. Regarding ß-arrestin-mediated cellular events, the ß-arrestin-biased ligand TRV026 induced receptor internalization at low physiological receptor levels insufficient for it to initiate calcium signaling. In contrast, unbiased AngII exhibited no relative preference between these outcomes under such low receptor conditions. However, with high receptor overexpression, TRV026 lost its functional selectivity. These results suggest receptor overexpression misleadingly distorts the bias of AT1R ligands and highlight the risks of using overexpressed systems to infer the signaling bias of GPCR ligands in physiologically relevant contexts.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Ligantes , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , beta-Arrestina 1/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Células HEK293
10.
Nat Neurosci ; 25(9): 1120, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35915165
11.
Cell ; 185(10): 1661-1675.e16, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483373

RESUMO

ß-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that ß-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the ß-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that ß-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for ß-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of ß-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream ß-arrestin-mediated events are directed.


Assuntos
Fosfopeptídeos , Receptores Acoplados a Proteínas G , Fosfopeptídeos/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
12.
J Biol Chem ; 297(6): 101369, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757127

RESUMO

G protein-coupled receptors (GPCRs) convert external stimuli into cellular signals through heterotrimeric guanine nucleotide-binding proteins (G-proteins) and ß-arrestins (ßarrs). In a ßarr-dependent signaling pathway, ßarrs link GPCRs to various downstream signaling partners, such as the Raf-mitogen-activated protein kinase extracellular signal-regulated kinase-extracellular signal-regulated kinase cascade. Agonist-stimulated GPCR-ßarr complexes have been shown to interact with C-Raf and are thought to initiate the mitogen-activated protein kinase pathway through simple tethering of these signaling partners. However, recent evidence shows that in addition to canonical scaffolding functions, ßarrs can allosterically activate downstream targets, such as the nonreceptor tyrosine kinase Src. Here, we demonstrate the direct allosteric activation of C-Raf by GPCR-ßarr1 complexes in vitro. Furthermore, we show that ßarr1 in complex with a synthetic phosphopeptide mimicking the human V2 vasopressin receptor tail that binds and functionally activates ßarrs also allosterically activates C-Raf. We reveal that the interaction between the phosphorylated GPCR C terminus and ßarr1 is necessary and sufficient for C-Raf activation. Interestingly, the interaction between ßarr1 and C-Raf was considerably reduced in the presence of excess activated H-Ras, a small GTPase known to activate C-Raf, suggesting that H-Ras and ßarr1 bind to the same region on C-Raf. Furthermore, we found that ßarr1 interacts with the Ras-binding domain of C-Raf. Taken together, these data suggest that in addition to canonical scaffolding functions, GPCR-ßarr complexes directly allosterically activate C-Raf by binding to its amino terminus. This work provides novel insights into how ßarrs regulate effector molecules to activate downstream signaling pathways.


Assuntos
Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Regulação Alostérica , Humanos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/química , Transdução de Sinais
13.
Mol Pharmacol ; 100(6): 568-579, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561298

RESUMO

ß 1 adrenergic receptors (ß 1ARs) are central regulators of cardiac function and a drug target for cardiac disease. As a member of the G protein-coupled receptor family, ß 1ARs activate cellular signaling by primarily coupling to Gs proteins to activate adenylyl cyclase, cAMP-dependent pathways, and the multifunctional adaptor-transducer protein ß-arrestin. Carvedilol, a traditional ß-blocker widely used in treating high blood pressure and heart failure by blocking ß adrenergic receptor-mediated G protein activation, can selectively stimulate Gs-independent ß-arrestin signaling of ß adrenergic receptors, a process known as ß-arrestin-biased agonism. Recently, a DNA-encoded small-molecule library screen against agonist-occupied ß 2 adrenergic receptors (ß 2ARs) identified Compound-6 (Cmpd-6) to be a positive allosteric modulator for agonists on ß 2ARs. Intriguingly, it was further discovered that Cmpd-6 is positively cooperative with the ß-arrestin-biased ligand carvedilol at ß 2ARs. Here we describe the surprising finding that at ß 1ARs unlike ß 2ARs, Cmpd-6 is cooperative only with carvedilol and not agonists. Cmpd-6 increases the binding affinity of carvedilol for ß 1ARs and potentiates carvedilol-stimulated, ß-arrestin-dependent ß 1AR signaling, such as epidermal growth factor receptor transactivation and extracellular signal-regulated kinase activation, whereas it does not have an effect on Gs-mediated cAMP generation. In vivo, Cmpd-6 enhances the antiapoptotic, cardioprotective effect of carvedilol in response to myocardial ischemia/reperfusion injury. This antiapoptotic role of carvedilol is dependent on ß-arrestins since it is lost in mice with myocyte-specific deletion of ß-arrestins. Our findings demonstrate that Cmpd-6 is a selective ß-arrestin-biased allosteric modulator of ß 1ARs and highlight its potential clinical utility in enhancing carvedilol-mediated cardioprotection against ischemic injury. SIGNIFICANCE STATEMENT: This study demonstrates the positive cooperativity of Cmpd-6 on ß1ARs as a ß-arrestin-biased positive allosteric modulator. Cmpd-6 selectively enhances the affinity and cellular signaling of carvedilol, a known ß-arrestin-biased ß-blocker for ß1ARs, whereas it has minimal effect on other ligands tested. Importantly, Cmpd-6 enhances the ß-arrestin-dependent in vivo cardioprotective effect of carvedilol during ischemia/reperfusion injury-induced apoptosis. The data support the potential therapeutic application of Cmpd-6 to enhance the clinical benefits of carvedilol in the treatment of cardiac disease.


Assuntos
Cardiotônicos/farmacologia , Carvedilol/farmacologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Regulação Alostérica , Animais , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais
14.
Mol Pharmacol ; 100(5): 513-525, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34580163

RESUMO

Among ß-blockers that are clinically prescribed for heart failure, carvedilol is a first-choice agent with unique pharmacological properties. Carvedilol is distinct from other ß-blockers in its ability to elicit ß-arrestin-biased agonism, which has been suggested to underlie its cardioprotective effects. Augmenting the pharmacologic properties of carvedilol thus holds the promise of developing more efficacious and/or biased ß-blockers. We recently identified compound-6 (cmpd-6), the first small molecule positive allosteric modulator of the ß2-adrenergic receptor (ß2AR). Cmpd-6 is positively cooperative with orthosteric agonists at the ß2AR and enhances agonist-mediated transducer (G-protein and ß-arrestin) signaling in an unbiased manner. Here, we report that cmpd-6, quite unexpectedly, displays strong positive cooperativity only with carvedilol among a panel of structurally diverse ß-blockers. Cmpd-6 enhances the binding affinity of carvedilol for the ß2AR and augments its ability to competitively antagonize agonist-induced cAMP generation. Cmpd-6 potentiates ß-arrestin1- but not Gs-protein-mediated high-affinity binding of carvedilol at the ß2AR and ß-arrestin-mediated cellular functions in response to carvedilol including extracellular signal-regulated kinase phosphorylation, receptor endocytosis, and trafficking into lysosomes. Importantly, an analog of cmpd-6 that selectively retains positive cooperativity with carvedilol acts as a negative modulator of agonist-stimulated ß2AR signaling. These unprecedented cooperative properties of carvedilol and cmpd-6 have implications for fundamental understanding of G-protein-coupled receptor (GPCR) allosteric modulation, as well as for the development of more effective biased beta blockers and other GPCR therapeutics. SIGNIFICANCE STATEMENT: This study reports on the small molecule-mediated allosteric modulation of the ß-arrestin-biased ß-blocker, carvedilol. The small molecule, compound-6 (cmpd-6), displays an exclusive positive cooperativity with carvedilol among other ß-blockers and enhances the binding affinity of carvedilol for the ß2-adrenergic receptor. Cooperative effects of cmpd-6 augment the ß-blockade property of carvedilol while potentiating its ß-arrestin-mediated signaling functions. These findings have potential implications in advancing G-protein-coupled receptor allostery, developing biased therapeutics and remedying cardiovascular ailments.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Receptores Adrenérgicos beta 2 , beta-Arrestinas/farmacologia , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Carvedilol/química , Carvedilol/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Receptores Adrenérgicos beta 2/metabolismo , Células Sf9 , beta-Arrestinas/química , beta-Arrestinas/metabolismo
15.
FEBS J ; 288(8): 2562-2569, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33605032

RESUMO

G protein-coupled receptors (GPCRs) are a large class of cell-surface receptor involved in cellular signaling that are currently the target of over one third of all clinically approved therapeutics. Classically, an agonist-bound, active GPCR couples to and activates G proteins through the receptor intracellular core. To attenuate G protein signaling, the GPCR is phosphorylated at its C-terminal tail and/or relevant intracellular loops, allowing for the recruitment of ß-arrestins (ßarrs). ßarrs then couple to the receptor intracellular core in order to mediate receptor desensitization and internalization. However, our laboratory and others have observed that some GPCRs are capable of continuously signaling through G protein even after internalization. This mode of sustained signaling stands in contrast with our previous understanding of GPCR signaling, and its molecular mechanism is still not well understood. Recently, we have solved the structure of a GPCR-G protein-ßarr megacomplex by cryo-electron microscopy. This 'megaplex' structure illustrates the independent and simultaneous coupling of a G protein to the receptor intracellular core, and binding of a ßarr to a phosphorylated receptor C-terminal tail, with all three components maintaining their respective canonically active conformations. The structure provides evidence for the ability of a GPCR to activate G protein even while being bound to and internalized by ßarr. It also reveals that the binding of G protein and ßarr to the same GPCR is not mutually exclusive, and raises a number of future questions to be answered regarding the mechanism of sustained signaling.


Assuntos
Endossomos/genética , Proteínas de Ligação ao GTP/genética , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética , Arrestinas/genética , Arrestinas/ultraestrutura , Microscopia Crioeletrônica , Endocitose/genética , Endossomos/ultraestrutura , Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Conformação Molecular , Fosforilação , Ligação Proteica/genética , Receptores Acoplados a Proteínas G/ultraestrutura , Transdução de Sinais/genética
16.
J Biol Chem ; 295(49): 16773-16784, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978252

RESUMO

G protein-coupled receptors (GPCRs) initiate signaling cascades via G-proteins and beta-arrestins (ßarr). ßarr-dependent actions begin with recruitment of ßarr to the phosphorylated receptor tail and are followed by engagement with the receptor core. ßarrs are known to act as adaptor proteins binding receptors and various effectors, but it is unclear whether in addition to the scaffolding role ßarrs can allosterically activate their downstream targets. Here we demonstrate the direct allosteric activation of proto-oncogene kinase Src by GPCR-ßarr complexes in vitro and establish the conformational basis of the activation. Whereas free ßarr1 had no effect on Src activity, ßarr1 in complex with M2 muscarinic or ß2-adrenergic receptors reconstituted in lipid nanodiscs activate Src by reducing the lag phase in Src autophosphorylation. Interestingly, receptor-ßarr1 complexes formed with a ßarr1 mutant, in which the finger-loop, required to interact with the receptor core, has been deleted, fully retain the ability to activate Src. Similarly, ßarr1 in complex with only a phosphorylated C-terminal tail of the vasopressin 2 receptor activates Src as efficiently as GPCR-ßarr complexes. In contrast, ßarr1 and chimeric M2 receptor with nonphosphorylated C-terminal tail failed to activate Src. Taken together, these data demonstrate that the phosphorylated GPCR tail interaction with ßarr1 is necessary and sufficient to empower it to allosterically activate Src. Our findings may have implications for understanding more broadly the mechanisms of allosteric activation of downstream targets by ßarrs.


Assuntos
Receptor Muscarínico M2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Vasopressinas/metabolismo , beta-Arrestina 1/metabolismo , Quinases da Família src/metabolismo , Regulação Alostérica , Ativação Enzimática , Humanos , Cinética , Mutagênese Sítio-Dirigida , Nanoestruturas/química , Peptídeos/síntese química , Peptídeos/química , Fosforilação , Ligação Proteica , Proto-Oncogene Mas , Receptor Muscarínico M2/química , Receptores Adrenérgicos beta 2/química , Receptores de Vasopressinas/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , beta-Arrestina 1/química , beta-Arrestina 1/genética , Domínios de Homologia de src , Quinases da Família src/química
17.
Cell ; 182(5): 1362-1362.e1, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888497

RESUMO

The arrestins are ubiquitously expressed adaptor proteins that orchestrate transmembrane signaling cascades triggered by the 7-transmembrane G protein-coupled receptors. While originally discovered as proteins that block receptor-G protein coupling, arrestins are now appreciated for their expanding repertoire of dynamic protein interactions and cellular functions.


Assuntos
Arrestinas/metabolismo , Membrana Celular/metabolismo , Mapas de Interação de Proteínas/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
18.
Proc Natl Acad Sci U S A ; 117(33): 20284-20291, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32753386

RESUMO

There is considerable interest in developing antibodies as functional modulators of G protein-coupled receptor (GPCR) signaling for both therapeutic and research applications. However, there are few antibody ligands targeting GPCRs outside of the chemokine receptor group. GPCRs are challenging targets for conventional antibody discovery methods, as many are highly conserved across species, are biochemically unstable upon purification, and possess deeply buried ligand-binding sites. Here, we describe a selection methodology to enrich for functionally modulatory antibodies using a yeast-displayed library of synthetic camelid antibody fragments called "nanobodies." Using this platform, we discovered multiple nanobodies that act as antagonists of the angiotensin II type 1 receptor (AT1R). Following angiotensin II infusion in mice, we found that an affinity matured nanobody antagonist has comparable antihypertensive activity to the angiotensin receptor blocker (ARB) losartan. The unique pharmacology and restricted biodistribution of nanobody antagonists may provide a path for treating hypertensive disorders when small-molecule drugs targeting the AT1R are contraindicated, for example, in pregnancy.


Assuntos
Antagonistas de Receptores de Angiotensina , Receptores de Angiotensina/imunologia , Anticorpos de Domínio Único , Animais , Afinidade de Anticorpos , Pressão Sanguínea , Linhagem Celular , Humanos , Camundongos
19.
Trends Cell Biol ; 30(9): 736-747, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32622699

RESUMO

G protein-coupled receptors (GPCRs) are privileged structural scaffolds in biology that have the versatility to regulate diverse physiological processes. Interestingly, many GPCR ligands exhibit significant 'bias' - the ability to preferentially activate subsets of the many cellular pathways downstream of these receptors. Recently, complementary information from structural and spectroscopic approaches has made significant inroads into understanding the mechanisms of these biased ligands. The consistently emerging theme is that GPCRs are highly dynamic proteins, and ligands with varying pharmacological properties differentially modulate the equilibrium among multiple conformations. Biased signaling and other recently appreciated complexities of GPCR signaling thus appear to be a natural consequence of the conformational heterogeneity of GPCRs and GPCR-transducer complexes.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Fenômenos Biofísicos , Humanos , Ligantes , Conformação Proteica , Receptores Acoplados a Proteínas G/agonistas
20.
Proc Natl Acad Sci U S A ; 117(22): 12435-12443, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414934

RESUMO

A decrease in skeletal muscle strength and functional exercise capacity due to aging, frailty, and muscle wasting poses major unmet clinical needs. These conditions are associated with numerous adverse clinical outcomes including falls, fractures, and increased hospitalization. Clenbuterol, a ß2-adrenergic receptor (ß2AR) agonist enhances skeletal muscle strength and hypertrophy; however, its clinical utility is limited by side effects such as cardiac arrhythmias mediated by G protein signaling. We recently reported that clenbuterol-induced increases in contractility and skeletal muscle hypertrophy were lost in ß-arrestin 1 knockout mice, implying that arrestins, multifunctional adapter and signaling proteins, play a vital role in mediating the skeletal muscle effects of ß2AR agonists. Carvedilol, classically defined as a ßAR antagonist, is widely used for the treatment of chronic systolic heart failure and hypertension, and has been demonstrated to function as a ß-arrestin-biased ligand for the ß2AR, stimulating ß-arrestin-dependent but not G protein-dependent signaling. In this study, we investigated whether treatment with carvedilol could enhance skeletal muscle strength via ß-arrestin-dependent pathways. In a murine model, we demonstrate chronic treatment with carvedilol, but not other ß-blockers, indeed enhances contractile force in skeletal muscle and this is mediated by ß-arrestin 1. Interestingly, carvedilol enhanced skeletal muscle contractility despite a lack of effect on skeletal muscle hypertrophy. Our findings suggest a potential unique clinical role of carvedilol to stimulate skeletal muscle contractility while avoiding the adverse effects with ßAR agonists. This distinctive signaling profile could present an innovative approach to treating sarcopenia, frailty, and secondary muscle wasting.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , beta-Arrestina 1/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiologia , beta-Arrestina 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA