Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Reports ; 10(3): 956-969, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29478898

RESUMO

MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO]) are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation.


Assuntos
Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Células-Tronco/fisiologia , Transativadores/metabolismo
2.
Nat Commun ; 9(1): 471, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396429

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal-dominant disorder characterized by progressive and profoundly disabling heterotopic ossification (HO). Here we show that fibro/adipogenic progenitors (FAPs) are a major cell-of-origin of HO in an accurate genetic mouse model of FOP (Acvr1 tnR206H ). Targeted expression of the disease-causing type I bone morphogenetic protein (BMP) receptor, ACVR1(R206H), to FAPs recapitulates the full spectrum of HO observed in FOP patients. ACVR1(R206H)-expressing FAPs, but not wild-type FAPs, activate osteogenic signaling in response to activin ligands. Conditional loss of the wild-type Acvr1 allele dramatically exacerbates FAP-directed HO, suggesting that mutant and wild-type ACVR1 receptor complexes compete for activin ligands or type II BMP receptor binding partners. Finally, systemic inhibition of activin A completely blocks HO and restores wild-type-like behavior to transplanted Acvr1 R206H/+ FAPs. Understanding the cells that drive HO may facilitate the development of cell-specific therapeutic approaches to inhibit catastrophic bone formation in FOP.


Assuntos
Receptores de Ativinas Tipo I/genética , Ativinas/metabolismo , Modelos Animais de Doenças , Miosite Ossificante/etiologia , Células-Tronco/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Animais , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos Transgênicos , Músculo Esquelético/fisiologia , Miosite Ossificante/metabolismo , Osteogênese , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA