Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
iScience ; 26(12): 108426, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38058306

RESUMO

Memory consolidation can benefit from post-learning sleep, eventually leading to long-term microstructural brain modifications to accommodate new memory representations. Non-invasive diffusion-weighted magnetic resonance imaging (DWI) allows the observation of (micro)structural brain remodeling after time-limited motor learning. Here, we combine conventional diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) that allows modeling dendritic and axonal complexity in gray matter to investigate with improved specificity the microstructural brain mechanisms underlying time- and sleep-dependent motor memory consolidation dynamics. Sixty-one young healthy adults underwent four DWI sessions, two sequential motor trainings, and a night of total sleep deprivation or regular sleep distributed over five days. We observed rapid-motor-learning-related remodeling in occipitoparietal, temporal, and motor-related subcortical regions, reflecting temporary dynamics in learning-related neuronal brain plasticity processes. Sleep-related consolidation seems not to exert a detectable impact on diffusion parameters, at least on the timescale of a few days.

2.
Epilepsia ; 64(12): 3307-3318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857465

RESUMO

OBJECTIVES: Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined the volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by the presence or absence of FBTCS, ictal central apnea (ICA), and post-convulsive central apnea (PCCA). METHODS: Seventy-three patients with focal impaired awareness seizures without FBTC seizures (FBTCneg group) and 30 with FBTCS (FBTCpos group) recorded during video electroencephalography (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired high-resolution T1-weighted anatomic and multi-shell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all patients with epilepsy and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between three groups: healthy subjects, FBTCneg and FBTCpos groups. The FBTCpos group was further subdivided by the presence of ICA and PCCA, verified by VEEG. RESULTS: Bilateral amygdala volumes were significantly increased in the FBTCpos cohort compared to healthy controls and the FBTCneg group. Patients with recorded PCCA had the highest increase in bilateral amygdala volume of the FBTCpos cohort. Amygdala neurite density index (NDI) values were decreased significantly in both the FBTCneg and FBTCpos groups relative to healthy controls, with values in the FBTCpos group being the lowest of the two. The presence of PCCA was associated with significantly lower NDI values vs the non-apnea FBTCpos group (p = 0.004). SIGNIFICANCE: Individuals with FBTCpos and PCCA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk.


Assuntos
Epilepsias Parciais , Epilepsia Tônico-Clônica , Epilepsia , Apneia do Sono Tipo Central , Humanos , Apneia do Sono Tipo Central/diagnóstico por imagem , Apneia do Sono Tipo Central/etiologia , Convulsões , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/complicações , Eletroencefalografia/métodos , Tonsila do Cerebelo/diagnóstico por imagem , Apneia
3.
Epilepsy Res ; 192: 107139, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37068421

RESUMO

Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.


Assuntos
Epilepsias Parciais , Epilepsia , Morte Súbita Inesperada na Epilepsia , Humanos , Imagem de Tensor de Difusão/métodos , Apneia , Tonsila do Cerebelo/diagnóstico por imagem , Epilepsias Parciais/complicações , Epilepsias Parciais/diagnóstico por imagem
4.
medRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36993394

RESUMO

Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.

5.
medRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993530

RESUMO

Objectives: Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by presence or absence of FBTCS, ictal central apnea (ICA) and post-ictal central apnea (PICA). Methods: 73 patients with only-focal seizures and 30 with FBTCS recorded during video EEG (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired high-resolution T1-weighted anatomical and multi-shell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all epilepsy patients and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between healthy subjects, and patients with only-focal seizures or FBTCS The FBTCS group was further subdivided by presence of ICA and PICA, verified by VEEG. Results: Bilateral amygdala volumes were significantly increased in the FBTCS cohort compared to healthy controls and the focal cohort. Patients with recorded PICA had the highest increase in bilateral amygdala volume of the FBTCS cohort.Amygdala neurite density index (NDI) values were significantly decreased in both the focal and FBTCS groups relative to healthy controls, with values in the FBTCS group being the lowest of the two. The presence of PICA was associated with significantly lower NDI values vs the non-apnea FBTCS group (p=0.004). Significance: Individuals with FBTCS and PICA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk.

6.
IEEE Trans Med Imaging ; 41(9): 2521-2531, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35412978

RESUMO

Online atlasing, i.e., incrementing an atlas with new images as they are acquired, is key when performing studies on very large, or still being gathered, databases. Regular approaches to atlasing however do not focus on this aspect and impose a complete reconstruction of the atlas when adding images. We propose instead a diffeomorphic online atlasing method that allows gradual updates to an atlas. In this iterative centroid approach, we integrate new subjects in the atlas in an iterative manner, gradually moving the centroid of the images towards its final position. This leads to a computationally cheap approach since it only necessitates one additional registration per new subject added. We validate our approach on several experiments with three main goals: 1- to evaluate atlas image quality of the obtained atlases with sharpness and overlap measures, 2- to assess the deviation in terms of transformations with respect to a conventional atlasing method and 3- to compare its computational time with regular approaches of the literature. We demonstrate that the transformations divergence with respect to a state-of-the-art atlas construction method is small and reaches a plateau, that the two construction methods have the same ability to map subject homologous regions onto a common space and produce images of equivalent quality. The computational time of our approach is also drastically reduced for regular updates. Finally, we also present a direct extension of our method to update spatio-temporal atlases, especially useful for developmental studies.

7.
Front Neurosci ; 15: 658002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927592

RESUMO

OBJECTIVES: The severity of neurocognitive impairment increases with prematurity. However, its mechanisms remain poorly understood. Our aim was firstly to identify multiparametric magnetic resonance imaging (MRI) markers that differ according to the degree of prematurity, and secondly to evaluate the impact of clinical complications on these markers. MATERIALS AND METHODS: We prospectively enrolled preterm infants who were divided into two groups according to their degree of prematurity: extremely preterm (<28 weeks' gestational age) and very preterm (28-32 weeks' gestational age). They underwent a multiparametric brain MRI scan at term-equivalent age including morphological, diffusion tensor and arterial spin labeling (ASL) perfusion sequences. We quantified overall and regional volumes, diffusion parameters, and cerebral blood flow (CBF). We then compared the parameters for the two groups. We also assessed the effects of clinical data and potential MRI morphological abnormalities on those parameters. RESULTS: Thirty-four preterm infants were included. Extremely preterm infants (n = 13) had significantly higher frontal relative volumes (p = 0.04), frontal GM relative volumes (p = 0.03), and regional CBF than very preterm infants, but they had lower brainstem and insular relative volumes (respectively p = 0.008 and 0.04). Preterm infants with WM lesions on MRI had significantly lower overall GM CBF (13.3 ± 2 ml/100 g/min versus 17.7 ± 2.5, < ml/100 g/min p = 0.03). CONCLUSION: Magnetic resonance imaging brain scans performed at term-equivalent age in preterm infants provide quantitative imaging parameters that differ with respect to the degree of prematurity, related to brain maturation.

8.
PLoS One ; 15(2): e0214174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32092061

RESUMO

We propose a novel method to quantify brain growth in 3 arbitrary orthogonal directions of the brain or its sub-regions through linear registration. This is achieved by introducing a 9 degrees of freedom (dof) transformation called anisotropic similarity which is an affine transformation with constrained scaling directions along arbitrarily chosen orthogonal vectors. This gives the opportunity to extract scaling factors describing brain growth along those directions by registering a database of subjects onto a common reference. This information about directional growth brings insights that are not usually available in longitudinal volumetric analysis. The interest of this method is illustrated by studying the anisotropic regional and global brain development of 308 healthy subjects betwen 0 and 19 years old. A gender comparison of those scaling factors is also performed for four age-intervals. We demonstrate through these applications the stability of the method to the chosen reference and its ability to highlight growth differences accros regions and gender.


Assuntos
Encéfalo/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Algoritmos , Anisotropia , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adulto Jovem
9.
Neuroimage Clin ; 24: 101939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31362150

RESUMO

The primary objective of this study was to evaluate changes in cerebral blood flow (CBF) using arterial spin labeling MRI between day 4 of life (DOL4) and day 11 of life (DOL11) in neonates with hypoxic-ischemic encephalopathy (HIE) treated with hypothermia. The secondary objectives were to compare CBF values between the different regions of interest (ROIs) and between infants with ischemic lesions on MRI and infants with normal MRI findings. We prospectively included all consecutive neonates with HIE admitted to the neonatal intensive care unit of our institution who were eligible for therapeutic hypothermia. Each neonate systematically underwent two MRI examinations as close as possible to day 4 (early MRI) and day 11 (late MRI) of life. A custom processing pipeline of morphological and perfusion imaging data adapted to neonates was developed to perform automated ROI analysis. Twenty-eight neonates were included in the study between April 2015 and December 2017. There were 16 boys and 12 girls. Statistical analysis was finally performed on 37 MRIs, 17 early MRIs and 20 late MRIs. Eleven neonates had both early and late MRIs of good quality available. Eight out of 17 neonates (47%) had an abnormal on late MRI as performed and 7/20 neonates (35%) had an abnormal late MRI. CBF values in the basal ganglia and thalami (BGT) and temporal lobes were significantly higher on DOL4 than on DOL11. There were no significant differences between DOL4 and DOL11 for the other ROIs. CBF values were significantly higher in the BGT vs. the cortical GM, on both DOL4 and DOL11. On DOL4, the CBF was significantly higher in the cortical GM, the BGT, and the frontal and parietal lobes in subjects with an abnormal MRI compared to those with a normal MRI. On DOL11, CBF values in each ROI were not significantly different between the normal MRI group and the abnormal MRI group, except for the temporal lobes. This article proposes an innovative processing pipeline for morphological and ASL data suited to neonates that enable automated segmentation to obtain CBF values over ROIs. We evaluate CBF on two successive scans within the first 15 days of life in the same subjects. ASL imaging in asphyxiated neonates seems more relevant when used relatively early, in the first days of life. The correlation of intra-subject changes in cerebral perfusion between early and late MRI with neurodevelopmental outcome warrants investigation in a larger cohort, to determine whether the CBF pattern change can provide prognostic information beyond that provided by visible structural abnormalities on conventional MRI.


Assuntos
Circulação Cerebrovascular/fisiologia , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/fisiopatologia , Imageamento por Ressonância Magnética/tendências , Marcadores de Spin , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA