RESUMO
We characterize Trypanosoma cruzi infections from blood and cerebrospinal fluid samples in a case series of people with human immunodeficiency virus and Chagas disease. We identify different infecting T. cruzi populations, highlighting the usefulness of real-time polymerase chain reaction for Chagas disease reactivation diagnosis and evaluation of treatment response.
RESUMO
Corneal transplantation is the most frequent transplant worldwide. Tissue characteristics allow storage and transport, even between continents, increasing its accessibility around the world. Donor infection with Trypanosoma cruzi is not defined as a corneal discarding factor, although the transplant is not recommended preventively, as in any infectious diseases. Herein, by means of polymerase chain reaction (PCR) strategies, we analyzed parasite presence in ocular tissue from 10 deceased donors with Chagas diseases. Among them, positive findings were obtained in corneas, scleras, and eye muscle samples of three, two, and one donor, respectively. Moreover, among the six T. cruzi defined populations, TcV and TcVI parasites were found in some samples based on group-specific amplification strategies. Our findings point out the actual possibility of T. cruzi transmission due to corneal transplantation and makes donor's serological status knowledge mandatory regardless of graft provenance. Failing that, we suggest a posttransplant follow-up of recipients from seropositive donors.
Assuntos
Doença de Chagas/transmissão , Córnea/parasitologia , Músculos Oculomotores/parasitologia , Esclera/parasitologia , Trypanosoma cruzi/genética , Adulto , Idoso , Argentina , Transplante de Córnea , DNA de Protozoário/análise , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Doadores de Tecidos , Obtenção de Tecidos e ÓrgãosRESUMO
Many important pathogen-host interactions rely on highly specific carbohydrate binding events. In the case of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, glycointeractions involving sialic acid (SA) residues are pivotal for parasite infectivity, escape from immune surveillance and pathogenesis. Though unable to synthesize SA de novo, T. cruzi displays a unique trans-Sialidase (TS) enzyme, which is able to cleave terminal SA residues from host donor glycoconjugates and transfer them onto parasite surface mucins, thus generating protective/adhesive structures. In addition, this parasite sheds TS into the bloodstream, as a way of modifying the surface SA signature, and thereby the signaling/functional properties of mammalian host target cells on its own advantage. Here, we discuss the pathogenic aspects of T. cruzi TS: its molecular adaptations, the multiplicity of interactions in which it is involved during infections, and the array of novel and appealing targets for intervention in Chagas disease provided by TS-remodeled sialoglycophenotypes.
Assuntos
Doença de Chagas/imunologia , Glicoproteínas/metabolismo , Interações Hospedeiro-Parasita/imunologia , Neuraminidase/metabolismo , Polissacarídeos/imunologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/patogenicidade , Animais , Doença de Chagas/parasitologia , Glicoproteínas/imunologia , Humanos , Evasão da Resposta Imune , Neuraminidase/imunologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas de Protozoários/imunologia , Ácidos Siálicos/química , Ácidos Siálicos/imunologia , Ácidos Siálicos/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/imunologia , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismoRESUMO
The trans-sialidase (TS), a virulence factor expressed on the surface of Trypanosoma cruzi, the agent of Chagas disease, is an enzyme that transfers sialic acids between glycoconjugates. In humans and most tested mammals, the onset of the chronic phase of T. cruzi infection correlates with the elicitation of antibodies directed to the TS catalytic domain, which inhibit the sialyl residues transfer reaction in vitro and in vivo. The method described here, termed trans-sialidase inhibition assay (TIA), enables the detection of TS-neutralizing antibodies in serum samples of different mammalian species, without the use of conjugated secondary reagents. The high specificity and exquisite sensitivity displayed by the TIA allow to overcome the limitations of routinely used Chagas disease serodiagnostic assays.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Doença de Chagas/diagnóstico , Doença de Chagas/imunologia , Glicoproteínas/imunologia , Neuraminidase/imunologia , Trypanosoma cruzi/enzimologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antiprotozoários/sangue , Doença de Chagas/sangue , Ensaios Enzimáticos/métodos , Humanos , Proteínas Recombinantes/imunologia , Trypanosoma cruzi/imunologia , Fatores de Virulência/imunologiaRESUMO
The Trypanosoma cruzi trypomastigote membrane provides a major protective role against mammalian host-derived defense mechanisms while allowing the parasite to interact with different cell types and trigger pathogenesis. This surface has been historically appreciated as a rather unstructured 'coat', mainly consisting of a continuous layer of glycolipids and heavily O-glycosylated mucins, occasionally intercalated with different developmentally regulated molecules displaying adhesive and/or enzymatic properties. Recent findings, however, indicate that the trypomastigote membrane is made up of multiple, densely packed and discrete 10-150nm lipid-driven domains bearing different protein composition; hence resembling a highly organized 'patchwork quilt' design. Here, we discuss different aspects underlying the biogenesis, assembly, and dynamics of this cutting-edge fashion outfit, as well as its functional implications.
Assuntos
Interações Hospedeiro-Parasita/fisiologia , Trypanosoma cruzi/fisiologia , Tripanossomíase/imunologia , Tripanossomíase/parasitologia , Animais , Glicolipídeos/metabolismo , Interações Hospedeiro-Parasita/imunologia , Humanos , Membranas/imunologia , Mucinas/metabolismo , Domínios ProteicosRESUMO
The trans-sialidases (TSs) from Trypanosoma cruzi, the agent of Chagas disease, are virulence factors shed to the bloodstream that induce strong alterations in the immune system. Here, we report that both enzymatically active TS (aTS) and its lectinlike isoform (iTS) disturb CD4 T cell physiology, inducing downregulation of Th1 cell functionality and in vivo cell expansion. By using ovalbumin-specific DO11.10 cells as tracers of clones developing the Th1 phenotype, we found that the infection induced significant amounts of gamma interferon (IFN-γ) but low levels of interleukin 2 (IL-2) and increased IL-4 production in vivo, in agreement with a mixed T helper response. The production of cytokines associated with the Th2 phenotype was prevented by passive transfer of anti-TS neutralizing antibodies. TSs also reduced the T cell receptor signaling as assayed by Zap-70 phosphorylation. TSs also reduced IL-2 and IFN-γ secretion, with a concomitant increase in IL-4 production and then an unbalancing of the CD4 T cell response toward the Th2 phenotype. This effect was prevented by using anti-IL-10 neutralizing antibodies or IL-10(-/-) antigen-presenting cells, supporting the subversion of this regulatory pathway. In support, TSs stimulated IL-10 secretion by antigen-presenting cells during their interaction with CD4 T cells. When polarized cells were stimulated in the presence of TSs, the secretion of IL-2 and IFN-γ was strongly downregulated in Th1 cells, while IL-2 production was upregulated in Th2 cells. Although the Th1 response is associated with host survival, it may simultaneously induce extensive damage to infected tissues. Thus, by delaying the elicitation of the Th1 response and limiting its effector properties, TSs restrain the cell response, supporting T. cruzi colonization and persistence while favoring host survival.
Assuntos
Glicoproteínas/metabolismo , Evasão da Resposta Imune , Fatores Imunológicos/metabolismo , Interleucina-10/metabolismo , Neuraminidase/metabolismo , Células Th1/imunologia , Trypanosoma cruzi/imunologia , Animais , Interferon gama/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Fatores de Virulência/metabolismoRESUMO
Trypanosoma cruzi the agent of Chagas disease is a monophyletic but heterogeneous group conformed by several Discrete Typing Units (DTUs) named TcI to TcVI characterized by genetic markers. The trans-sialidase (TS) is a virulence factor involved in cell invasion and pathogenesis that is differentially expressed in aggressive and less virulent parasite stocks. Genes encoding TS-related proteins are included in a large family divided in several groups but only one of them contains TS genes. Two closely related genes differing in a T/C transition encode the enzymatically active TS (aTS) and a lectin-like TS (iTS). We quantified the aTS/iTS genes from TcII and TcVI aggressive and TcI low virulent strains and found variable aTS number (1-32) per haploid genome. In spite of being low TS enzyme-expressers, TcI strains carry 28-32 aTS gene copies. The intriguing absence of iTS genes in TcI strains together with the presence of aTS/iTS in TcII and TcVI strains (virulent) were observed. Moreover, after sequencing aTS/iTS from 38 isolates collected along the Americas encompassing all DTUs, the persistent absence of the iTS gene in TcI, TcIII and TcIV was found. In addition, the sequence clustering together with T/C transition analysis correlated to DTUs of T. cruzi. The consistence of TS results with both evolutionary genome models proposed for T. cruzi, namely the "Two Hybridization" and the "Three Ancestor" was discussed and reviewed to fit present findings. Parasite stocks to attempt genetic KO or to assay the involvement of iTS in parasite biology and virulence are finally available.
Assuntos
Genes de Protozoários , Glicoproteínas/genética , Neuraminidase/genética , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética , Fatores de Virulência/genética , Doença de Chagas/parasitologia , Códon , Genoma de Protozoário , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Chagas disease ranks among the world's most neglected tropical diseases and congenital transmission is increasingly responsible for urbanization of Chagas disease in non-endemic areas. Molecular assays for amplification and profiling of parasite minicircle DNA (kDNA) and identification of discrete typing units (DTUs) were prospectively conducted in bloodstream and placental samples from pregnant women cursing chronic Chagas disease residing in Buenos Aires city. Sensitivity of kDNA-PCR increased from 75.6% to 95.6% when one to three sequential blood samples were analysed. Congenital infection (CI) was diagnosed in 3 neonates born to kDNA-PCR positive mothers, one who had transmitted CI in a previous gestation, pointing to family clustering of congenital transmission. Fourteen of 44 placental samples were kDNA-PCR positive, all from non-CI transmitting women, indicating that placental PCR is not useful for CI diagnosis. Placental PCR positivity was not related to maternal bloodstream PCR positivity and placental parasitic subpopulations not observed in bloodstream were detected by minicircle signatures. PCR targeted to intergenic regions of spliced-leader genes and serological tests using trypomastigote small surface recombinant antigens showed predominance of DTU group TcII/V/VI and only one patient infected with TcI. To our knowledge, this is the first PCR-based follow-up study of bloodstream and placental T. cruzi infections during pregnancy, including identification of DTUs. kDNA-PCR assays in serial blood samples provided high sensitivity for detection of T. cruzi DNA in pregnant women with chronic Chagas disease.
Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , DNA de Cinetoplasto/genética , Doenças Placentárias/parasitologia , Trypanosoma cruzi/patogenicidade , Urbanização , Adulto , Argentina/epidemiologia , Western Blotting , Doença de Chagas/genética , Doença Crônica , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Recém-Nascido , Doenças Placentárias/epidemiologia , Reação em Cadeia da Polimerase , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/genética , Estudos Prospectivos , Trypanosoma cruzi/genéticaRESUMO
Genotyping studies show a polarized geographic distribution of Trypanosoma cruzi lineages in humans. Here, we assessed their distribution along Latin America through an immunological approach we designated Western blot (WB) assay with Trypomastigote small-surface antigen (TSSA) I and TSSA II (TSSA-WB). These antigens are expressed by T. cruzi I (TCI; now TcI) and T. cruzi II (TCII; reclassified as TcII to TcVI) parasites. TSSA-WB showed good concordance with genotyping tests. An unexpected frequency of TSSA II recognition was observed in Colombia, Venezuela, and Mexico (northern region of Latin America). In Argentina and Paraguay (southern region), immunophenotyping confirmed the already reported TCII (TcII to TcVI) dominance. The lineage distribution between these regions showed significant difference but not among countries within them (except for Colombia and Venezuela). TSSA-WB shows TCII emergence in the northern region where TCI was reported as dominant or even as the unique T. cruzi lineage infecting humans.
Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Doenças Endêmicas , Trypanosoma cruzi/classificação , Trypanosoma cruzi/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Western Blotting , Genótipo , Humanos , Imunofenotipagem , América Latina/epidemiologia , Trypanosoma cruzi/genéticaRESUMO
BACKGROUND: One hundred years after the discovery of Chagas disease, it remains a major neglected tropical disease. Chronic Chagas heart disease (cChHD) is the most severe manifestation. Heart transplantation is the proper treatment for end-stage heart failure, although reactivation of disease may result after receipt of immunosuppressive therapy. T. cruzi strains cluster into 6 discrete typing units (DTUs; I-VI) associated with different geographical distribution, transmission cycles and varying disease symptoms. In the southern cone of South America, T. cruzi II, V, and VI populations appear to be associated with Chagas disease and T. cruzi I with sylvatic cycles. METHODS: Molecular characterization of DTUs, T. cruzi I genotypes (on the basis of spliced-leader gene polymorphisms), and minicircle signatures was conducted using cardiac explant specimens and blood samples obtained from a cohort of 16 Argentinean patients with cChHD who underwent heart transplantation and from lesion samples obtained from 6 of these patients who presented with clinical reactivation of Chagas disease. RESULTS: Parasite persistence was associated with myocarditis progression, revealing T. cruzi I (genotype Id) in 3 explant samples and T. cruzi II, V, or VI in 5 explant samples. Post-heart transplantation follow-up examination of bloodstream DTUs identified T. cruzi I in 5 patients (genotypes Ia or Id) and T. cruzi II, V, or VI in 7 patients. T. cruzi I, V, and VI were detected in skin chagoma specimens, and T. cruzi V and VI were detected in samples obtained from patients with myocarditis reactivations. Multiple DTUs or genotypes at diverse body sites and polymorphic minicircle signatures at different cardiac regions revealed parasite histotropism. T. cruzi I infections clustered in northern Argentina (latitude, 23 degrees S-27 degrees S), whereas T. cruzi II, V, or VI DTUs were more ubiquitous. CONCLUSIONS: Multiple DTUs coexist in patients with Chagas disease. The frequent finding of T. cruzi I associated with cardiac damage was astounding, revealing its pathogenic role in cChHD at the southern cone.
Assuntos
Cardiomiopatia Chagásica/diagnóstico , Cardiomiopatia Chagásica/parasitologia , Transplante de Coração , Trypanosoma cruzi/isolamento & purificação , Adolescente , Adulto , Cardiomiopatia Chagásica/terapia , Doença Crônica , Feminino , Genótipo , Coração/parasitologia , Humanos , Hospedeiro Imunocomprometido , Imunossupressores/efeitos adversos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Recidiva , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética , Adulto JovemRESUMO
Sialylation is emerging as an important issue in developing thymocytes and is considered among the most significant cell surface modifications, although its physiologic relevance is far from being completely understood. It is regulated by the concerted expression of sialyl transferases along thymocyte development. After in vivo administration of trans-sialidase, a virulence factor from the American trypanosomatid Trypanosoma cruzi that directly transfers the sialyl residue among macromolecules, we found that the alteration of the sialylation pattern induces thymocyte apoptosis inside the "nurse cell complex." This suggests a glycosylation survey in the development of the T cell compartment. In this study, we report that this thymocyte apoptosis mechanism requires the presence of androgens. No increment in apoptosis was recorded after trans-sialidase administration in females or in antiandrogen-treated, gonadectomized, or androgen receptor mutant male mice. The androgen receptor presence was required only in the thymic epithelial cells as determined by bone marrow chimeric mouse approaches. The presence of the CD43 surface mucin, a molecule with a still undefined function in thymocytes, was another absolute requirement. The trans-sialidase-induced apoptosis proceeds through the TNF-alpha receptor 1 deathly signaling leading to the activation of the caspase 3. Accordingly, the production of the cytokine was increased in thymocytes. The ability of males to delete thymocytes altered in their sialylation pattern reveals a sexual dimorphism in the glycosylation survey during the development of the T cell compartment that might be related to the known differences in the immune response among sexes.
Assuntos
Glicoproteínas/metabolismo , Neuraminidase/metabolismo , Caracteres Sexuais , Timo/metabolismo , Trypanosoma cruzi/enzimologia , Animais , Apoptose/efeitos dos fármacos , Feminino , Glicoproteínas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuraminidase/toxicidade , Receptores Androgênicos/deficiência , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ácidos Siálicos/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Testosterona/metabolismo , Testosterona/farmacologia , Timo/citologia , Timo/efeitos dos fármacos , Timo/imunologia , Trypanosoma cruzi/patogenicidade , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Strong thrombocytopenia is observed during acute infection with Trypanosoma cruzi, the parasitic protozoan agent of American trypanosomiasis or Chagas' disease. The parasite sheds trans-sialidase, an enzyme able to mobilize the sialyl residues on cell surfaces, which is distributed in blood and is a virulence factor. Since the sialic acid content on the platelet surface is crucial for determining the half-life of platelets in blood, we examined the possible involvement of the parasite-derived enzyme in thrombocytopenia induction. We found that a single intravenous injection of trans-sialidase into naive mice reduced the platelet count by 50%, a transient effect that lasted as long as the enzyme remained in the blood. CD43(-/-) mice were affected to a similar extent. When green fluorescent protein-expressing platelets were treated in vitro with trans-sialidase, their sialic acid content was reduced together with their life span, as determined after transfusion into naive animals. No apparent deleterious effect on the bone marrow was observed. A central role for Kupffer cells in the clearance of trans-sialidase-altered platelets was revealed after phagocyte depletion by administration of clodronate-containing liposomes and splenectomy. Consistent with this, parasite strains known to exhibit more trans-sialidase activity induced heavier thrombocytopenia. Finally, the passive transfer of a trans-sialidase-neutralizing monoclonal antibody to infected animals prevented the clearance of transfused platelets. Results reported here strongly support the hypothesis that the trans-sialidase is the virulence factor that, after depleting the sialic acid content of platelets, induces the accelerated clearance of the platelets that leads to the thrombocytopenia observed during acute Chagas' disease.