Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Softw Big Sci ; 5(1): 22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34642648

RESUMO

The long-term sustainability of the high-energy physics (HEP) research software ecosystem is essential to the field. With new facilities and upgrades coming online throughout the 2020s, this will only become increasingly important. Meeting the sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g., Unix, version control, C++, and continuous integration). The second is knowledge of domain-specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving specialized techniques, including parallel programming, machine learning and data science tools, and techniques to maintain software projects at all scales. This paper discusses the collective software training program in HEP led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients for the solution of HEP computing challenges. Beyond serving the community by ensuring that members are able to pursue research goals, the program serves individuals by providing intellectual capital and transferable skills important to careers in the realm of software and computing, inside or outside HEP.

2.
Curr Biol ; 26(20): 2800-2804, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27693138

RESUMO

Exploration is an elementary and fundamental form of learning about the structure of the world [1-3]. Little is known about what exactly is learned when an animal seeks to become familiar with the environment. Navigating animals explore the environment for safe return to an important place (e.g., a nest site) and to travel between places [4]. Flying central-place foragers like honeybees (Apis mellifera) extend their exploration into distances from which the features of the nest cannot be directly perceived [5-10]. Bees perform short-range and long-range orientations flights. Short-range flights are performed in the immediate surroundings of the hive and occur more frequently under unfavorable weather conditions, whereas long-range flights lead the bees into different sectors of the surrounding environment [11]. Applying harmonic radar technology for flight tracking, we address the question of whether bees learn landscape features during their first short-range or long-range orientation flight. The homing flights of single bees were compared after they were displaced to areas explored or not explored during the orientation flight. Bees learn the landscape features during the first orientation flight since they returned faster and along straighter flights from explored areas as compared to unexplored areas. We excluded a range of possible factors that might have guided bees back to the hive based on egocentric navigation strategies (path integration, beacon orientation, and pattern matching of the skyline). We conclude that bees localize themselves according to learned ground structures and their spatial relations to the hive.


Assuntos
Abelhas/fisiologia , Voo Animal , Comportamento de Retorno ao Território Vital , Aprendizagem , Orientação Espacial , Animais , Alemanha
4.
Proc Natl Acad Sci U S A ; 111(24): 8949-54, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889633

RESUMO

Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass-referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees.


Assuntos
Abelhas/fisiologia , Cognição , Comportamento de Retorno ao Território Vital/fisiologia , Anestésicos/química , Animais , Teorema de Bayes , Encéfalo/fisiologia , Ritmo Circadiano , Sinais (Psicologia) , Voo Animal , Isoflurano/química , Memória , Razão de Chances , Orientação , Comportamento Espacial , Luz Solar
5.
Proc Natl Acad Sci U S A ; 109(18): 7061-6, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22509009

RESUMO

Following general anesthesia, people are often confused about the time of day and experience sleep disruption and fatigue. It has been hypothesized that these symptoms may be caused by general anesthesia affecting the circadian clock. The circadian clock is fundamental to our well-being because it regulates almost all aspects of our daily biochemistry, physiology, and behavior. Here, we investigated the effects of the most common general anesthetic, isoflurane, on time perception and the circadian clock using the honeybee (Apis mellifera) as a model. A 6-h daytime anesthetic systematically altered the time-compensated sun compass orientation of the bees, with a mean anticlockwise shift in vanishing bearing of 87° in the Southern Hemisphere and a clockwise shift in flight direction of 58° in the Northern Hemisphere. Using the same 6-h anesthetic treatment, time-trained bees showed a delay in the start of foraging of 3.3 h, and whole-hive locomotor-activity rhythms were delayed by an average of 4.3 h. We show that these effects are all attributable to a phase delay in the core molecular clockwork. mRNA oscillations of the central clock genes cryptochrome-m and period were delayed by 4.9 and 4.3 h, respectively. However, this effect is dependent on the time of day of administration, as is common for clock effects, and nighttime anesthesia did not shift the clock. Taken together, our results suggest that general anesthesia during the day causes a persistent and marked shift of the clock effectively inducing "jet lag" and causing impaired time perception. Managing this effect in humans is likely to help expedite postoperative recovery.


Assuntos
Anestesia Geral/efeitos adversos , Abelhas/fisiologia , Relógios Circadianos/fisiologia , Percepção do Tempo/fisiologia , Ciclos de Atividade/efeitos dos fármacos , Ciclos de Atividade/fisiologia , Anestésicos Gerais/efeitos adversos , Animais , Sequência de Bases , Abelhas/efeitos dos fármacos , Abelhas/genética , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Voo Animal/efeitos dos fármacos , Voo Animal/fisiologia , Genes de Insetos , Humanos , Isoflurano/efeitos adversos , Modelos Animais , Fotoperíodo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Percepção do Tempo/efeitos dos fármacos
6.
Curr Biol ; 21(8): 645-50, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21474313

RESUMO

Humans draw maps when communicating about places or verbally describe routes between locations. Honeybees communicate places by encoding distance and direction in their waggle dances. Controversy exists not only about the structure of spatial memory but also about the efficiency of dance communication. Some of these uncertainties were resolved by studies in which recruits' flights were monitored using harmonic radar. We asked whether the two sources of vector information--the previously learned flight vector to a food source and the communicated vector--are represented in a common frame of spatial reference. We found that recruits redirect their outbound flights and perform novel shortcut flights between the communicated and learned locations in both directions. Guidance by beacons at the respective locations or by the panorama of the horizon was excluded. These findings indicate a spatial reference based on either large-scale vector integration or a common geocentric map-like spatial memory. Both models predict a memory structure that stores the spatial layout in such a way that decisions are made according to estimated distances and directions. The models differ with respect to the role of landmarks and the time of learning of spatial relations.


Assuntos
Abelhas/fisiologia , Comunicação Animal , Animais , Comportamento Animal , Comportamento de Retorno ao Território Vital , Aprendizagem , Memória , Modelos Biológicos , Comportamento Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA