Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38948770

RESUMO

The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo , and in vivo , we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.

2.
Cell Death Dis ; 13(10): 887, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270985

RESUMO

In humans, most neurons are born during embryonic development and have to persist throughout the entire lifespan of an individual. Thus, human neurons have to develop elaborate survival strategies to protect against accidental cell death. We set out to decipher the developmental adaptations resulting in neuronal resilience. We demonstrate that, during the time course of maturation, human neurons install a complex and complementary anti-apoptotic signaling network. This includes i.) a downregulation of central proteins of the intrinsic apoptosis pathway including several caspases, ii.) a shift in the ratio of pro- and anti-apoptotic BCL-2 family proteins, and iii.) an elaborate regulatory network resulting in upregulation of the inhibitor of apoptosis protein (IAP) XIAP. Together, these adaptations strongly increase the threshold for apoptosis initiation when confronted with a wide range of cellular stressors. Our results highlight how human neurons are endowed with complex and redundant preemptive strategies to protect against stress and cell death.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Caspases/metabolismo , Apoptose/fisiologia , Morte Celular , Proteínas Inibidoras de Apoptose/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
3.
Science ; 377(6613): 1448-1452, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137045

RESUMO

Information processing in neuronal networks involves the recruitment of selected neurons into coordinated spatiotemporal activity patterns. This sparse activation results from widespread synaptic inhibition in conjunction with neuron-specific synaptic excitation. We report the selective recruitment of hippocampal pyramidal cells into patterned network activity. During ripple oscillations in awake mice, spiking is much more likely in cells in which the axon originates from a basal dendrite rather than from the soma. High-resolution recordings in vitro and computer modeling indicate that these spikes are elicited by synaptic input to the axon-carrying dendrite and thus escape perisomatic inhibition. Pyramidal cells with somatic axon origin can be activated during ripple oscillations by blocking their somatic inhibition. The recruitment of neurons into active ensembles is thus determined by axonal morphological features.


Assuntos
Axônios , Dendritos , Potenciais Pós-Sinápticos Inibidores , Células Piramidais , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Simulação por Computador , Dendritos/fisiologia , Camundongos , Células Piramidais/fisiologia
4.
Elife ; 112022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35441590

RESUMO

The canonical view of neuronal function is that inputs are received by dendrites and somata, become integrated in the somatodendritic compartment and upon reaching a sufficient threshold, generate axonal output with axons emerging from the cell body. The latter is not necessarily the case. Instead, axons may originate from dendrites. The terms 'axon carrying dendrite' (AcD) and 'AcD neurons' have been coined to describe this feature. In rodent hippocampus, AcD cells are shown to be functionally 'privileged', since inputs here can circumvent somatic integration and lead to immediate action potential initiation in the axon. Here, we report on the diversity of axon origins in neocortical pyramidal cells of rodent, ungulate, carnivore, and primate. Detection methods were Thy-1-EGFP labeling in mouse, retrograde biocytin tracing in rat, cat, ferret, and macaque, SMI-32/ßIV-spectrin immunofluorescence in pig, cat, and macaque, and Golgi staining in macaque and human. We found that in non-primate mammals, 10-21% of pyramidal cells of layers II-VI had an AcD. In marked contrast, in macaque and human, this proportion was lower and was particularly low for supragranular neurons. A comparison of six cortical areas (being sensory, association, and limbic in nature) in three macaques yielded percentages of AcD cells which varied by a factor of 2 between the areas and between the individuals. Unexpectedly, pyramidal cells in the white matter of postnatal cat and aged human cortex exhibit AcDs to much higher percentages. In addition, interneurons assessed in developing cat and adult human cortex had AcDs at type-specific proportions and for some types at much higher percentages than pyramidal cells. Our findings expand the current knowledge regarding the distribution and proportion of AcD cells in neocortex of non-primate taxa, which strikingly differ from primates where these cells are mainly found in deeper layers and white matter.


Assuntos
Neocórtex , Idoso , Animais , Axônios/fisiologia , Dendritos/fisiologia , Furões , Haplorrinos , Humanos , Camundongos , Células Piramidais , Ratos , Suínos
5.
Nat Commun ; 12(1): 23, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397944

RESUMO

The axon initial segment (AIS) is a critical microdomain for action potential initiation and implicated in the regulation of neuronal excitability during activity-dependent plasticity. While structural AIS plasticity has been suggested to fine-tune neuronal activity when network states change, whether it acts in vivo as a homeostatic regulatory mechanism in behaviorally relevant contexts remains poorly understood. Using the mouse whisker-to-barrel pathway as a model system in combination with immunofluorescence, confocal analysis and electrophysiological recordings, we observed bidirectional AIS plasticity in cortical pyramidal neurons. Furthermore, we find that structural and functional AIS remodeling occurs in distinct temporal domains: Long-term sensory deprivation elicits an AIS length increase, accompanied with an increase in neuronal excitability, while sensory enrichment results in a rapid AIS shortening, accompanied by a decrease in action potential generation. Our findings highlight a central role of the AIS in the homeostatic regulation of neuronal input-output relations.


Assuntos
Segmento Inicial do Axônio/metabolismo , Córtex Cerebral/metabolismo , Homeostase , Envelhecimento/fisiologia , Animais , Comportamento Exploratório , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Privação Sensorial , Fatores de Tempo , Vibrissas/fisiologia
6.
Hippocampus ; 30(10): 1044-1057, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412680

RESUMO

The rodent hippocampus expresses a variety of neuronal network oscillations depending on the behavioral state of the animal. Locomotion and active exploration are accompanied by theta-nested gamma oscillations while resting states and slow-wave sleep are dominated by intermittent sharp wave-ripple complexes. It is believed that gamma rhythms create a framework for efficient acquisition of information whereas sharp wave-ripples are thought to be involved in consolidation and retrieval of memory. While not strictly mutually exclusive, one of the two patterns usually dominates in a given behavioral state. Here we explore how different input patterns induce either of the two network states, using an optogenetic stimulation approach in hippocampal brain slices of mice. We report that the pattern of the evoked oscillation depends strongly on the initial synchrony of activation of excitatory cells within CA3. Short, synchronous activation favors the emergence of sharp wave-ripple complexes while persistent but less synchronous activity-as typical for sensory input during exploratory behavior-supports the generation of gamma oscillations. This dichotomy is reflected by different degrees of synchrony of excitatory and inhibitory synaptic currents within these two states. Importantly, the induction of these two fundamental network patterns does not depend on the presence of any neuromodulatory transmitter like acetylcholine, but is merely based on a different synchrony in the initial activation pattern.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Rede Nervosa/fisiologia , Animais , Hipocampo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Rede Nervosa/química , Optogenética/métodos , Técnicas de Cultura de Órgãos
7.
J Exp Biol ; 220(Pt 20): 3695-3705, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28819056

RESUMO

Learning and memory play a central role in the behavior and communication of foraging bees. We have previously shown that chronic uptake of the neonicotinoid thiacloprid affects the behavior of honey bees in the field. Foraging behavior, homing success, navigation performance and social communication were impaired. Thiacloprid collected at a feeding site at low doses accumulates in foragers over time. Here, we applied a laboratory standard procedure (the proboscis-extension response conditioning) in order to assess which processes, acquisition, memory consolidation and/or memory retrieval were compromised after bees were fed either with thiacloprid or the formulation of thiacloprid named Calypso® at different sublethal doses. Extinction and generalization tests allowed us to investigate whether bees respond to a learned stimulus, and how selectively. We showed that thiacloprid, as active substance and as formulation, poses a substantial risk to honey bees by disrupting learning and memory functions. These data support and specify the data collected in the field.


Assuntos
Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Olfato/efeitos dos fármacos , Tiazinas/toxicidade , Animais , Condicionamento Clássico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos
8.
Arch Toxicol ; 91(1): 393-406, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26872951

RESUMO

Human primary hepatocytes represent a gold standard in in vitro liver research. Due to their low availability and high costs alternative liver cell models with comparable morphological and biochemical characteristics have come into focus. The human hepatocarcinoma cell line HepG2 is often used as a liver model for toxicity studies. However, under two-dimensional (2D) cultivation conditions the expression of xenobiotic-metabolizing enzymes and typical liver markers such as albumin is very low. Cultivation for 21 days in a three-dimensional (3D) Matrigel culture system has been reported to strongly increase the metabolic competence of HepG2 cells. In our present study we further compared HepG2 cell cultivation in three different 3D systems: collagen, Matrigel and Alvetex culture. Cell morphology, albumin secretion, cytochrome P450 monooxygenase enzyme activities, as well as gene expression of xenobiotic-metabolizing and liver-specific enzymes were analyzed after 3, 7, 14, and 21 days of cultivation. Our results show that the previously reported increase of metabolic competence of HepG2 cells is not primarily the result of 3D culture but a consequence of the duration of cultivation. HepG2 cells grown for 21 days in 2D monolayer exhibit comparable biochemical characteristics, CYP activities and gene expression patterns as all 3D culture systems used in our study. However, CYP activities did not reach the level of HepaRG cells. In conclusion, the increase of metabolic competence of the hepatocarcinoma cell line HepG2 is not due to 3D cultivation but rather a result of prolonged cultivation time.


Assuntos
Técnicas de Cultura de Células , Regulação Enzimológica da Expressão Gênica , Hepatócitos/metabolismo , Alicerces Teciduais/química , Testes de Toxicidade , Animais , Biomarcadores/metabolismo , Forma Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/química , Combinação de Medicamentos , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Imageamento Tridimensional , Laminina/química , Microscopia Confocal , Proteoglicanas/química , RNA Mensageiro/metabolismo , Fatores de Tempo , Xenobióticos/toxicidade
9.
Int Rev Psychiatry ; 23(6): 565-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22272595

RESUMO

Achieving successful communication in transcultural contexts means integrating emotional communication patterns into a global context. Professional, rational communication is characteristic of the cultural dimension, and emotions are characteristic of the direct, interpersonal dimension of human existence. Humans strive to achieve coherence in all dimensions of their lives; this goal is in the end the most essential aspect of psychophysical self-regulation. A major role in integrating emotional needs and cultural features in global coherence is played by the attractor 'global affinity'. The transitions from emotional coherence to cultural coherence, and likewise from cultural coherence to global coherence, can cause considerable insecurity as well as psychological problems, which previously went by the name 'adjustment disorders'. However, instead of pathologizing these processes, we should understand them in a salutogenic sense as challenges important for both individual and collective development. The development of more coherence is regulated by the neuropsychological approach and avoidance system. This system can be consciously fostered by directing our attention to the commonalities of all human beings. Such a global salutogenic orientation furthers both communication and creativity in teamwork. This article introduces a consequent salutogenic and evolutionary systemic view of transcultural communication and demonstrates its effectiveness in a number of case examples.


Assuntos
Comparação Transcultural , Inteligência Emocional , Internacionalidade , Relações Interpessoais , Senso de Coerência , Ajustamento Social , Barreiras de Comunicação , Diversidade Cultural , Emoções , Etnopsicologia/métodos , Promoção da Saúde , Nível de Saúde , Humanos , Saúde Mental , Neuropsicologia/métodos , Competência Profissional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA