Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370721

RESUMO

Advances in therapies of pediatric acute myeloid leukemia (AML) have been minimal in recent decades. Although 82% of patients will have an initial remission after intensive therapy, approximately 40% will relapse. KMT2A is the most common chromosomal translocation in AML and has a poor prognosis resulting in high relapse rates and low chemotherapy efficacy. Novel targeted approaches are needed to increase sensitivity to chemotherapy. Recent studies have shown how interactions within the bone marrow (BM) microenvironment help AML cells evade chemotherapy and contribute to relapse by promoting leukemic blast survival. This study investigates how DNA hypomethylating agent azacitidine and histone deacetylase inhibitor panobinostat synergistically overcome BM niche-induced chemoprotection modulated by stromal, endothelial, and mesenchymal stem cells and the extracellular matrix (ECM). We show that direct contact between AML cells and BM components mediates chemoprotection. We demonstrate that azacitidine and panobinostat synergistically sensitize MV4;11 cells and KMT2A rearranged pediatric patient-derived xenograft lines to cytarabine in multicell coculture. Treatment with the epigenetic drug combination reduced leukemic cell association with multicell monolayer and ECM in vitro and increased mobilization of leukemic cells from the BM in vivo. Finally, we show that pretreatment with the epigenetic drug combination improves the efficacy of chemotherapy in vivo.

2.
mSphere ; 8(1): e0043922, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36645277

RESUMO

The Enterobacterial Rcs stress response system reacts to envelope stresses through a complex two-component phosphorelay system to regulate a variety of environmental response genes, such as capsular polysaccharide and flagella biosynthesis genes. However, beyond Escherichia coli, the stresses that activate Rcs are not well-understood. In this study, we used a Rcs system-dependent luminescent transcriptional reporter to screen a library of over 240 antimicrobial compounds for those that activated the Rcs system in Serratia marcescens, a Yersiniaceae family bacterium. Using an isogenic rcsB mutant to establish specificity, both new and expected activators were identified, including the short-chain fatty acid propionic acid, which is found at millimolar levels in the human gut. Propionic acid did not reduce the bacterial intracellular pH, as was hypothesized for its antibacterial mechanism. Instead, data suggest that the Rcs-activation by propionic acid is due, in part, to an inactivation of alanine racemase. This enzyme is responsible for the biosynthesis of d-alanine, which is an amino-acid that is required for the generation of bacterial cell walls. Consistent with what was observed in S. marcescens, in E. coli, alanine racemase mutants demonstrated elevated expression of the Rcs-reporter in a d-alanine-dependent and RcsB-dependent manner. These results suggest that host gut short-chain fatty acids can influence bacterial behavior via the activation of the Rcs stress response system. IMPORTANCE The Rcs bacterial stress response system responds to envelope stresses by globally altering gene expression to profoundly impact host-pathogen interactions, virulence, and antibiotic tolerance. In this study, a luminescent Rcs-reporter plasmid was used to screen a library of compounds for activators of Rcs. Among the strongest inducers was the short-chain fatty acid propionic acid, which is found at high concentrations in the human gut. This study suggests that gut short-chain fatty acids can affect both bacterial virulence and antibiotic tolerance via the induction of the Rcs system.


Assuntos
Alanina Racemase , Proteínas de Escherichia coli , Alanina/metabolismo , Alanina Racemase/genética , Alanina Racemase/metabolismo , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Propionatos/farmacologia , Propionatos/metabolismo
3.
Antibiotics (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572615

RESUMO

The Rcs phosphorelay is a bacterial stress response system that responds to envelope stresses and in turn controls several virulence-associated pathways, including capsule, flagella, and toxin biosynthesis, of numerous bacterial species. The Rcs system also affects antibiotic tolerance, biofilm formation, and horizontal gene transfer. The Rcs system of the ocular bacterial pathogen Serratia marcescens was recently demonstrated to influence ocular pathogenesis in a rabbit model of keratitis, with Rcs-defective mutants causing greater pathology and Rcs-activated strains demonstrating reduced inflammation. The Rcs system is activated by a variety of insults, including ß-lactam antibiotics and polymyxin B. In this study, we developed three luminescence-based transcriptional reporters for Rcs system activity and used them to test whether antibiotics used for empiric treatment of ocular infections influence Rcs system activity in a keratitis isolate of S. marcescens. These included antibiotics to which the bacteria were susceptible and resistant. Results indicate that cefazolin, ceftazidime, polymyxin B, and vancomycin activate the Rcs system to varying degrees in an RcsB-dependent manner, whereas ciprofloxacin and tobramycin activated the promoter fusions, but in an Rcs-independent manner. Although minimum inhibitory concentration (MIC) analysis demonstrated resistance of the test bacteria to polymyxin B and vancomycin, the Rcs system was activated by sub-inhibitory concentrations of these antibiotics. Together, these data indicate that a bacterial stress system that influences numerous pathogenic phenotypes and drug-tolerance is influenced by different classes of antibiotics despite the susceptibility status of the bacterium.

4.
J Microbiol Methods ; 178: 106058, 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931841

RESUMO

This study introduces mCloverBlaster as a genetic tool to create deletions and transcriptional and translational fusions in bacterial genomes using recombineering. The major advantage of this system is that it can be used to make deletions and fusions without leaving a selectable marker on the chromosome. mCloverBlaster has a kanamycin resistance cassette with an I-SceI restriction site flanked by fragments of the gene for the mClover3 fluorescent protein including direct repeats of mClover3 sequence on both sides of the kanamycin resistance gene. The mCloverBlaster sequence is introduced into the chromosome using lambda red recombineering, expression of I-SceI creates a double stranded break in the kanamycin resistance cassette that initiates a recombination event that can occur in the mClover3 repeats. This recombination results in the simultaneous removal of the kanamycin resistance gene and the restoration of a functional mClover3 gene that can be used as a reporter. Here, this system was used to replace the rcsB stress response gene in Serratia marcescens. The resulting strain was tested for mClover3 fluorescence as a reporter for rcsB gene expression and evaluated for pigment biosynthesis. In summary, mCloverBlaster is a molecular genetic tool to make markerless mClover3 fusions and gene deletions.

5.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414795

RESUMO

Tunable control of gene expression is an invaluable tool for biological experiments. In this study, we describe a new xylose-inducible promoter system and evaluate it in both Pseudomonas aeruginosa and Pseudomonas fluorescens The Pxut promoter, derived from the P. fluorescensxut operon, was incorporated into a broad-host-range pBBR1-based plasmid and was compared to the Escherichia coli-derived PBAD promoter using gfp as a reporter. Green fluorescent protein (GFP) fluorescence from the Pxut promoter was inducible in both Pseudomonas species, but not in E. coli, which may facilitate the cloning of genes toxic to E. coli to generate plasmids. The Pxut promoter was activated at a lower inducer concentration than PBAD in P. fluorescens, and higher gfp levels were achieved using Pxut Flow cytometry analysis indicated that Pxut was leakier than PBAD in the Pseudomonas species tested but was expressed in a higher proportion of cells when induced. d-Xylose as a sole carbon source did not support the growth of P. aeruginosa or P. fluorescens and is less expensive than many other commonly used inducers, which could facilitate large-scale applications. The efficacy of this system was demonstrated by its use to reveal a role for the P. aeruginosa type II secretion system gene xcpQ in bacterial inhibition of corneal epithelial cell wound closure. This study introduces a new inducible promoter system for gene expression for use in Pseudomonas species.IMPORTANCEPseudomonas species are enormously important in human infections, in biotechnology, and as model systems for investigating basic science questions. In this study, we have developed a xylose-inducible promoter system, evaluated it in P. aeruginosa and P. fluorescens, and found it to be suitable for the strong induction of gene expression. Furthermore, we have demonstrated its efficacy in controlled gene expression to show that a type II secretion system protein from P. aeruginosa, XcpQ, is important for host-pathogen interactions in a corneal wound closure model.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas fluorescens/genética , Reepitelização/genética , Sistemas de Secreção Tipo II/genética , Xilose/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Epitélio Corneano/lesões , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas fluorescens/metabolismo , Análise de Sequência de DNA , Sistemas de Secreção Tipo II/metabolismo
6.
Pol J Microbiol ; 68(1): 43-50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31050252

RESUMO

Several biotypes of the Gram-negative bacterium Serratia marcescens produce the tri-pyrole pigment and secondary metabolite prodigiosin. The biological activities of this pigment have therapeutic potential. For over half a century it has been known that biosynthesis of prodi giosin is inhibited when bacteria are grown at elevated temperatures, yet the fundamental mechanism underlying this thermoregulation has not been characterized. In this study, chromosomal and plasmid-borne luxCDABE transcriptional reporters revealed reduced transcription of the prodigiosin biosynthetic operon at 37°C compared to 30°C indicating transcriptional control of pigment production. Moreover, induced expression of the prodigiosin biosynthetic operon at 37°C was able to produce pigmented colonies and cultures demonstrating that physiological conditions at 37°C allow prodigiosin production and indicating that post-transcriptional control is not a major contributor to the thermoregulation of prodigiosin pigmentation. Genetic experiments support the model that the HexS transcription factor is a key contributor to thermoregulation of pigmentation, whereas CRP plays a minor role, and a clear role for EepR and PigP was not observed. Together, these data indicate that thermoregulation of prodigiosin production at elevated temperatures is controlled largely, if not exclusively, at the transcriptional level.Several biotypes of the Gram-negative bacterium Serratia marcescens produce the tri-pyrole pigment and secondary metabolite prodigiosin. The biological activities of this pigment have therapeutic potential. For over half a century it has been known that biosynthesis of prodi giosin is inhibited when bacteria are grown at elevated temperatures, yet the fundamental mechanism underlying this thermoregulation has not been characterized. In this study, chromosomal and plasmid-borne luxCDABE transcriptional reporters revealed reduced transcription of the prodigiosin biosynthetic operon at 37°C compared to 30°C indicating transcriptional control of pigment production. Moreover, induced expression of the prodigiosin biosynthetic operon at 37°C was able to produce pigmented colonies and cultures demonstrating that physiological conditions at 37°C allow prodigiosin production and indicating that post-transcriptional control is not a major contributor to the thermoregulation of prodigiosin pigmentation. Genetic experiments support the model that the HexS transcription factor is a key contributor to thermoregulation of pigmentation, whereas CRP plays a minor role, and a clear role for EepR and PigP was not observed. Together, these data indicate that thermoregulation of prodigiosin production at elevated temperatures is controlled largely, if not exclusively, at the transcriptional level.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Prodigiosina/biossíntese , Serratia marcescens/genética , Serratia marcescens/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética , Aciltransferases/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Temperatura Alta , Oxirredutases/genética , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA