Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 8: 1016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015006

RESUMO

Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between -90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (-90 to -3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials' zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery.

2.
Langmuir ; 36(21): 5880-5890, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32366096

RESUMO

For many biomedical applications, material surfaces should not only prevent unspecific protein adsorption and bacterial attachment as in many other applications in the food, health, or marine industry, but they should also promote the adhesion of tissue cells. In order to take a first step toward the challenging development of protein and bacteria-repelling and cell-adhesion-promoting materials, polyamine and poly(amido amine) surface coatings with terminal amine groups and varying structure (dendrimer, oligomer, polymer) were immobilized on model surfaces via silane chemistry. Physicochemical analysis showed that all modifications are hydrophilic (contact angles <60°) and possess similar surface free energies (SFEs, ∼46-54 mN/m), whereas their amine group densities and zeta potentials at physiological conditions (pH 7.4) varied greatly (-50 to +75 mV). In protein adsorption experiments with single proteins (human serum albumin (HSA) and lysozyme) as well as complex physiological fluids (fetal bovine serum (FBS) and human saliva), the amounts of adsorbed protein were found to correlate strongly with the zeta potential of the surface coatings. Both modifications based on linear polymers exhibited good protein repellency toward all proteins examined and are thus promising for testing in cell adhesion studies.

3.
Mater Sci Eng C Mater Biol Appl ; 101: 190-203, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029312

RESUMO

Besides their use for drug and gene delivery, dendrimer molecules are also favorable for the design of new surface coatings for orthopedic and dental implants due to the wide variety of functional terminal groups and their multivalent character. The purpose of this work was to observe how covalently immobilized polyamidoamine (PAMAM) dendrimer molecules with different terminal chemical groups influenced serum protein adsorption and osteoblast behavior. To this end, fifth-generation PAMAM dendrimers were immobilized on silicon surfaces with an anhydride-containing silane coupling agent which results in positively charged terminal NH2-groups. Coatings with a net negative charge were generated by introduction of terminal CO2H- or CH3-groups. Surface characterization was performed by static and dynamic contact angle and zeta potential. The in vitro studies with human MG-63 osteoblastic cells focused on cell adhesion, morphology, cell cycle, apoptosis and actin formation within 24 h. This work demonstrated that cell growth was dependent on surface chemistry and correlated strongly with the surface free energy and charge of the material. The positively charged NH2 surface induced tight cell attachment with well-organized actin stress fibers and a well spread morphology. In contrast, CO2H- and CH3-functional groups provoked a decrease in cell adhesion and spreading and indicated higher apoptotic potential, although both were hydrophilic. The knowledge about the cell-material dialogue is of relevance for the development of bioactive implants in regenerative medicine.


Assuntos
Dendrímeros/química , Dendrímeros/farmacologia , Osteócitos/citologia , Poliaminas/química , Poliaminas/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Adsorção , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Silício/farmacologia , Eletricidade Estática , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA