Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
J Am Chem Soc ; 146(20): 14194-14202, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717949

RESUMO

Single-atom catalysts, characterized by transition metal-(N/O)4 units on nanocarbon (M-(N/O)4-C), have emerged as efficient performers in water electrolysis. However, there are few guiding principles for accurately controlling the ligand fields of single atoms to further stimulate the catalyst activities. Herein, using the Ni-(N/O)4-C unit as a model, we develop a further modification of the P anion on the outer shells to modulate the morphology of the ligand. The catalyst thus prepared possesses high activity and excellent long-term durability, surpassing commercial Pt/C, RuO2, and currently reported single-atom catalysts. Notably, mechanistic studies demonstrated that the pseudocapacitive feature of multiscale anion-hybrid nanocarbon is considerable at accumulating enough positive charge [Q], contributing to the high oxygen evolution reaction (OER) order (ß) through the rate formula. DFT calculations also indicate that the catalytic activity is decided by the suitable barrier energy of the intermediates due to charge accumulation. This work reveals the activity origin of single atoms on multihybrid nanocarbon, providing a clear experiential formula for designing the electronic configuration of single-atom catalysts to boost electrocatalytic performance.

2.
Nat Commun ; 15(1): 4186, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760336

RESUMO

Arylamines, serving as crucial building blocks in natural products and finding applications in multifunctional materials, are synthesized on a large scale via an electrophilic nitration/reduction sequence. However, the current methods for aromatic C-H amination have not yet attained the same level of versatility as electrophilic nitration. Here we show an extensively investigated transition metal-free and regioselective strategy for the amination of nitrobenzenes, enabling the synthesis of 4-nitro-N-arylamines through C(sp2)-H/N-H cross-coupling between electron-deficient nitroarenes and amines. Mechanistic studies have elucidated that the crucial aspects of these reactions encompass the generation of nitrogen radicals and recombination of nitrobenzene complex radicals. The C(sp2)-N bond formation is demonstrated to be highly effective for primary and secondary arylamines as well as aliphatic amines under mild conditions, exhibiting exceptional tolerance towards diverse functional groups in both nitroarenes and amines (>100 examples with yields up to 96%). Notably, this C(sp2)-H/N-H cross-coupling exhibits exclusive para-selectivity.

3.
Chem Sci ; 15(6): 1921-1923, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332821

RESUMO

Lin Zhuang, Qiu Wang, Aiwen Lei and Qianghui Zhou introduce the Chemical Science and Green Chemistry joint themed collection celebrating the 130th Anniversary of Wuhan University.

4.
Natl Sci Rev ; 10(10): nwad187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38059062

RESUMO

Aziridines derived from bioactive molecules may have unique pharmacological activities, making them useful in pharmacology (e.g. mitomycin C). Furthermore, the substitution of the epoxide moiety in epothilone B with aziridine, an analog of epoxides, yielded a pronounced enhancement in its anticancer efficacy. Thus, there is interest in developing novel synthetic technologies to produce aziridines from bioactive molecules. However, known methods usually require metal catalysts, stoichiometric oxidants and/or pre-functionalized amination reagents, causing difficulty in application. A practical approach without a metal catalyst and extra-oxidant for the aziridination of bioactive molecules is in demand, yet challenging. Herein, we report an electro-oxidative flow protocol that accomplishes an oxidant-free aziridination of natural products. This process is achieved by an oxidative sulfonamide/alkene cross-coupling, in which sulfonamide and alkene undergo simultaneous oxidation or alkene is oxidized preferentially. Further anticancer treatments in cell lines have demonstrated the pharmacological activities of these aziridines, supporting the potential of this method for drug discovery.

5.
Proc Natl Acad Sci U S A ; 120(44): e2304148120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844213

RESUMO

Premelting of ice, a quasi-liquid layer (QLL) at the surface below the melting temperature, was first postulated by Michael Faraday 160 y ago. Since then, it has been extensively studied theoretically and experimentally through many techniques. Existing work has been performed predominantly on hexagonal ice, at conditions close to the triple point. Whether the same phenomenon can persist at much lower pressure and temperature, where stacking disordered ice sublimates directly into water vapor, remains unclear. Herein, we report direct observations of surface premelting on ice nanocrystals below the sublimation temperature using transmission electron microscopy (TEM). Similar to what has been reported on hexagonal ice, a QLL is found at the solid-vapor interface. It preferentially decorates certain facets, and its thickness increases as the phase transition temperature is approached. In situ TEM reveals strong diffusion of the QLL, while electron energy loss spectroscopy confirms its amorphous nature. More significantly, the premelting observed in this work is thought to be related to the metastable low-density ultraviscous water, instead of ambient liquid water as in the case of hexagonal ice. This opens a route to understand premelting and grassy liquid state, far away from the normal water triple point.

6.
ACS Nano ; 17(20): 19581-19599, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37820312

RESUMO

Transition metal elements, such as copper, play diverse and pivotal roles in oncology. They act as constituents of metalloenzymes involved in cellular metabolism, function as signaling molecules to regulate the proliferation and metastasis of tumors, and are integral components of metal-based anticancer drugs. Notably, recent research reveals that excessive copper can also modulate the occurrence of programmed cell death (PCD), known as cuprotosis, in cancer cells. This modulation occurs through the disruption of tumor cell metabolism and the induction of proteotoxic stress. This discovery uncovers a mode of interaction between transition metals and proteins, emphasizing the intricate link between copper homeostasis and tumor metabolism. Moreover, they provide innovative therapeutic strategies for the precise diagnosis and treatment of malignant tumors. At the crossroads of chemistry and oncology, we undertake a comprehensive review of copper homeostasis in tumors, elucidating the molecular mechanisms underpinning cuproptosis. Additionally, we summarize current nanotherapeutic approaches that target cuproptosis and provide an overview of the available laboratory and clinical methods for monitoring this process. In the context of emerging concepts, challenges, and opportunities, we emphasize the significant potential of nanotechnology in the advancement of this field.


Assuntos
Metaloproteínas , Neoplasias , Elementos de Transição , Cobre , Apoptose , Nanotecnologia , Neoplasias/tratamento farmacológico
7.
Nat Commun ; 14(1): 4638, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532729

RESUMO

Ligands and additives are often utilized to stabilize low-valent catalytic metal species experimentally, while their role in suppressing metal deposition has been less studied. Herein, an on-cycle mechanism is reported for CoCl2bpy2 catalyzed Negishi-type cross-coupling. A full catalytic cycle of this kind of reaction was elucidated by multiple spectroscopic studies. The solvent and ligand were found to be essential for the generation of catalytic active Co(I) species, among which acetonitrile and bipyridine ligand are resistant to the disproportionation events of Co(I). Investigations, based on Quick-X-Ray Absorption Fine Structure (Q-XAFS) spectroscopy, Electron Paramagnetic Resonance (EPR), IR allied with DFT calculations, allow comprehensive mechanistic insights that establish the structural information of the catalytic active cobalt species along with the whole catalytic Co(I)/Co(III) cycle. Moreover, the acetonitrile and bipyridine system can be further extended to the acylation, allylation, and benzylation of aryl zinc reagents, which present a broad substrate scope with a catalytic amount of Co salt. Overall, this work provides a basic mechanistic perspective for designing cobalt-catalyzed cross-coupling reactions.

8.
Angew Chem Int Ed Engl ; 62(50): e202309620, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606535

RESUMO

Organic electrosynthesis has consistently aroused significant interest within both academic and industrial spheres. Despite the considerable progress achieved in this field, the majority of electrochemical transformations have been conducted through the utilization of direct-current (DC) electricity. In contrast, the application of alternating current (AC), characterized by its polarity-alternating nature, remains in its infancy within the sphere of organic synthesis, primarily due to the absence of a comprehensive theoretical framework. This minireview offers an overview of recent advancements in AC-driven organic transformations and seeks to elucidate the differences between DC and AC electrolytic methodologies by probing into their underlying physical principles. These differences encompass the ability of AC to preclude the deposition of metal catalysts, the precision in modulating oxidation and reduction intensities, and the mitigation of mass transfer processes.

9.
Chem Sci ; 14(15): 4152-4157, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063790

RESUMO

The direct α-C(sp3)-H functionalization of widely available tertiary amines holds promise for the rapid construction of complex amine architectures. The activation of C(sp3)-H bonds through electron transfer and proton transfer by oxidants, photoredox catalysis and electrochemical oxidation have received wide attention recently. In these reactions, the direct capture and identification of the key reactive radical intermediates are technically difficult due to their short life-time. Herein, an online electrochemical mass spectrometry (MS) methodology was utilized to probe the short-lived intermediates in the electrochemical oxidative α-C(sp3)-H functionalization of tertiary amines. The resulting electrochemical oxidation intermediates, α-amino radical cation and iminium cation were successfully detected. Further, the α-amino C(sp3) radical added to the double bond of a phenyl trans-styryl sulfone, yielding another C(sp3) radical that leads to the final vinylation. Based on the mass spectrometric elucidation of the reactivity of the α-amino radical, a scale-up electrochemical radical vinylation methodology was established, with which a large variety of allylic amines with broad functional group tolerance were synthesized.

10.
Org Lett ; 25(10): 1722-1726, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36869877

RESUMO

Direct N-allylation of azoles with hydrogen evolution has been achieved through the synergistic combination of organic photocatalysis and cobalt catalysis. The protocol bypasses stoichiometric oxidants and prefunctionalization of alkenes and produces hydrogen (H2) as the byproduct. This transformation highlights high step- and atom-economy, high efficiency, and broad functional group tolerance for further derivatization, which opens a door for C-N bond formation that is valuable in heterocyclic chemistry.

11.
Org Lett ; 25(8): 1252-1256, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36866524

RESUMO

Due to the unique physicochemical properties of heterocyclic compounds, their construction is one of the central issues in synthetic chemistry. Here, we report a K2S2O8-induced protocol for constructing tetrahydroquinolines from bulk chemicals (alkenes and anilines). The merit of this method has been demonstrated by its operational simplicity, wide scope, mild conditions, and transition-metal-free system.

12.
Chem Commun (Camb) ; 59(25): 3707-3710, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36912357

RESUMO

Radical defluorinative functionalization of α-trifluoromethyl styrenes represents an effective way toward gem-difluoroalkenes. There are general interests in developing novel synthetic protocols for defluorinative functionalization with various types of radicals. However, reports on the preparation of gem-difluoro allylsulfones via an S-centered radical pathway are limited. Herein, we developed a photo/nickel dual-catalyzed defluorinative sulfonylation that rapidly and reliably synthesizes gem-difluoro allylsulfones. The merit of this protocol is exhibited by its mild conditions and wide scope, thus providing a novel strategy for the sulfonyl radical participating in radical defluorinative coupling.

13.
Nat Commun ; 14(1): 1476, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36928311

RESUMO

With the fast development of synthetic chemistry, the introduction of functional group into organic molecules has attracted increasing attention. In these reactions, the difunctionalization of unsaturated bonds, traditionally with one nucleophile and one electrophile, is a powerful strategy for the chemical synthesis. In this work, we develop a different path of electrochemical oxidative difunctionalization of diazo compounds with two different nucleophiles. Under metal-free and external oxidant-free conditions, a series of structurally diverse heteroatom-containing compounds hardly synthesized by traditional methods (such as high-value alkoxy-substituted phenylthioacetates, α-thio, α-amino acid derivatives as well as α-amino, ß-amino acid derivatives) are obtained in synthetically useful yields. In addition, the procedure exhibits mild reaction conditions, excellent functional-group tolerance and good efficiency on large-scale synthesis. Importantly, the protocol is also amenable to the key intermediate of bioactive molecules in a simple and practical process.

14.
Angew Chem Int Ed Engl ; 62(17): e202219166, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36826413

RESUMO

Precisely introducing two similar functional groups into bulk chemical alkenes represents a formidable route to complex molecules. Especially, the selective activation of two electrophiles is in crucial demand, yet challenging for cross-electrophile-coupling. Herein, we demonstrate a redox-mediated electrolysis, in which aryl nitriles are both aryl radical precursors and redox-mediators, enables an intermolecular alkene 1,2-diarylation with a remarkable regioselectivity, thereby avoiding the involvement of transition-metal catalysts. This transformation utilizes cyanoarene radical anions for activating various aryl halides (including iodides, bromides, and even chlorides) and affords 1,2-diarylation adducts in up to 83 % yield and >20 : 1 regioselectivity with more than 80 examples, providing a feasible approach to complex bibenzyl derivatives.

15.
Chem Sci ; 14(2): 372-378, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36687345

RESUMO

Selective C(sp3)-S bond breaking and transformation remains a particularly important, yet challenging goal in synthetic chemistry. Over the past few decades, transition metal-catalyzed cross-coupling reactions through the cleavage of C(sp3)-S bonds provided a powerful platform for the construction of target molecules. In contrast, the selective activation of widespread C(sp3)-S bonds is rarely studied and remains underdeveloped, even under relatively harsh conditions. Herein, a radical-mediated electrochemical strategy capable of selectively activating C(sp3)-S bonds is disclosed, offering an unprecedented method for the synthesis of valuable disulfides from widespread thioethers. Importantly, compared with conventional transition-metal catalyzed C-S bond breaking protocols, this method features mild, catalyst- and oxidant-free reaction conditions, as well excellent chemoselectivity towards C(sp3)-S bonds. Preliminary mechanistic studies reveal that sulfur radical species are involved in the reaction pathway and play an essential role in controlling the site-selectivity.

16.
J Am Chem Soc ; 145(5): 3175-3186, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705997

RESUMO

Oxidation-induced strategy for inert chemical bond activation through highly active radical cation intermediate has exhibited unique reactivity. Understanding the structure and reactivity patterns of radical cation intermediates is crucial in the mechanistic study and will be beneficial for developing new reactions. In this work, the structure and properties of indole radical cations have been revealed using time-resolved transient absorption spectroscopy, in situ electrochemical UV-vis, and in situ electrochemical electron paramagnetic resonance (EPR) technique. Density functional theory (DFT) calculations were used to explain and predict the regioselectivity of several electrochemical oxidative indole annulations. Based on the understanding of the inherent properties of several indole radical cations, two different regioselective annulations of indoles have been successfully developed under electrochemical oxidation conditions. Varieties of furo[2,3-b]indolines and furo[3,2-b]indolines were synthesized in good yields with high regioselectivities. Our mechanistic insights into indole radical cations will promote the further development of oxidation-induced indole functionalizations.

17.
Sci Bull (Beijing) ; 67(1): 79-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36545963

RESUMO

Electrochemistry contributes a strong tool for the manufacture of molecules, addressing intractable challenges in synthetic chemistry by enabling innovative reaction pathways. Herein, a bifunctional reagent, aqueous hydrochloric acid, is used to establish an electrochemical selective dual-oxidation approach that gives access to α-chlorosulfoxides from sulfides. This strategy presents broad substrate scope, high diastereoselectivity, and regioselectivity. The late-stage modification of amino acids and pharmaceutical derivatives further highlights the utility. Furthermore, detailed mechanistic studies reveal that the key success for this selective chemical transformation is the dual-oxidation process at the anode. This electrochemical dual-oxidation strategy may have wide universality; we anticipate diverse applications of this protocol across the many fields of chemistry.


Assuntos
Aminoácidos , Sulfetos , Sulfetos/química , Oxirredução , Aminas , Eletroquímica
18.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080004

RESUMO

The hydrogenation products of aromatic molecules with reducible groups (such as C=C, NO2, C=O, etc.) are relatively critical intermediate compounds in fine chemicals, but how to accurately reduce only specific groups is still challenging. In this work, a bimetallic Pt-Ni/Chitin catalyst was prepared for the first time by using renewable biomass resource chitin as support. As the carrier, the chitin was constructed into porous nanofibrous microspheres through the sol-gel strategy, which was favorable for the adhesion of nano-metals and the exchange of reactive substances due to its large surface area, porous structure, and rich functional groups. Then the Pt-Ni/Chitin catalyst was applied to selective hydrogenation with the model substrate of 4-nitrostyrene. As the highly dispersed Pt-Ni NPs with abundant exposed active sites and the synergistic effect of bimetals, the Pt-Ni/Chitin catalyst could efficiently and selectively hydrogenate only NO2 or C=C with yields of ~99% and TOF of 660 h-1, as well as good stability. This utilization of biomass resources to build catalyst materials would be important for the green and sustainable chemistry.

19.
Nat Commun ; 13(1): 4430, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908027

RESUMO

1,2-Amino oxygenation of alkenes has emerged as one of the most straightforward synthetic methods to produce ß-amino alcohols, which are important organic building blocks. Thus, a practical synthetic strategy for 1,2-amino oxygenation is highly desirable. Here, we reported an electro-oxidative intermolecular 1,2-amino oxygenation of alkenes with hydrogen evolution, removing the requirement of extra-oxidant. Using commercial oxygen and nitrogen sources as starting materials, this method provides a cheap, scalable, and efficient route to a set of valuable ß-amino alcohol derivatives. Moreover, the merit of this protocol has been exhibited by its broad substrate scope and good application in continuous-flow reactors. Furthermore, this method can be extended to other amino-functionalization of alkenes, thereby showing the potential to inspire advances in applications of electro-induced N-centered radicals (NCRs).


Assuntos
Alcenos , Hidrogênio , Alcenos/química , Catálise , Hidrogênio/química , Oxidantes , Oxirredução
20.
RSC Adv ; 12(29): 18676-18684, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873326

RESUMO

Using green, environmentally friendly and resource-rich cellulose as a raw material, a ligand-free and highly dispersed palladium (Pd) nano-catalyst was successfully prepared in a facile way. A variety of characterization results showed that the Pd nanoparticles (NPs) were uniformly spread on the cellulose nanoporous microspheres, with an average particle size of ∼2.75 nm. As a carrier, cellulose microspheres with nanoporous structure and rich -OH groups greatly promoted the attachment and distribution of the highly dispersed Pd NPs, along with the diffusion and exchange of reactants, so as to greatly promote the catalytic activity. In the Suzuki-Miyaura coupling reaction, the catalyst of C-Pd exhibited excellent catalytic activity (TOF up to 2126 h-1), broad applicability, and good recyclability with almost no active loss in 6 continuous runs. This utilizing of bioresources to build catalyst materials is important for sustainable chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA