Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Front Microbiol ; 14: 1212149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434706

RESUMO

The M protein, a major virulence factor of Group A Streptococcus (GAS), is regulated by the multigene regulator Mga. An unexplained phenomena frequently occurring with in vitro genetic manipulation or culturing of M1T1 GAS strains is the loss of M protein production. This study was aimed at elucidating the basis for the loss of M protein production. The majority of M protein-negative (M-) variants had one C deletion at a tract of 8 cytidines starting at base 1,571 of the M1 mga gene, which is designated as c.1571C[8]. The C deletion led to a c.1571C[7] mga variant that has an open reading frame shift and encodes a Mga-M protein fusion protein. Transformation with a plasmid containing wild-type mga restored the production of the M protein in the c.1571C[7] mga variant. Isolates producing M protein (M+) were recovered following growth of the c.1571C[7] M protein-negative variant subcutaneously in mice. The majority of the recovered isolates with reestablished M protein production had reverted back from c.1571C[7] to c.1571C[8] tract and some M+ isolates lost another C in the c.1571C[7] tract, leading to a c.1571C[6] variant that encodes a functional Mga with 13 extra amino acid residues at the C-terminus compared with wild-type Mga. The nonfunctional c.1571C[7] and functional c.1571C[6] variants are present in M1, M12, M14, and M23 strains in NCBI genome databases, and a G-to-A nonsense mutation at base 1,657 of M12 c.1574C[7] mga leads to a functional c.1574C[7]/1657A mga variant and is common in clinical M12 isolates. The numbers of the C repeats in this polycytidine tract and the polymorphism at base 1,657 lead to polymorphism in the size of Mga among clinical isolates. These findings demonstrate the slipped-strand mispairing within the c.1574C[8] tract of mga as a reversible switch controlling M protein production phase variation in multiple GAS common M types.

2.
Infect Immun ; 90(1): e0042321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34662211

RESUMO

To understand protective immune responses against the onset of group A Streptococcus respiratory infection, we investigated whether MyD88 KO mice were susceptible to acute infection through transmission. After commingling with mice that had intranasal group A Streptococcus (GAS) inoculation, MyD88-/- recipient mice had increased GAS loads in the nasal cavity and throat that reached a mean throat colonization of 6.3 × 106 CFU/swab and mean GAS load of 5.2 × 108 CFU in the nasal cavity on day 7. Beyond day 7, MyD88-/- recipient mice became moribund, with mean 1.6 × 107 CFU/swab and 2.5 × 109 CFU GAS in the throat and nasal cavity, respectively. Systemic GAS infection occurred a couple of days after the upper respiratory infection. GAS infects the lip, the gingival sulcus of the incisor teeth, and the lamina propria of the turbinate but not the nasal cavity and nasopharyngeal tract epithelia, and C57BL/6J recipient mice had no or low levels of GAS in the nasal cavity and throat. Direct nasal GAS inoculation of MyD88-/- mice caused GAS infection, mainly in the lamina propria of the turbinate. In contrast, C57BL/6J mice with GAS inoculation had GAS bacteria in the nasal cavity but not in the lamina propria of the turbinates. Thus, MyD88-/- mice are highly susceptible to acute and lethal GAS infection through transmission, and MyD88 signaling is critical for protection of the respiratory tract lamina propria but not nasal and nasopharyngeal epithelia against GAS infection.


Assuntos
Epitélio/microbiologia , Interações Hospedeiro-Patógeno , Fator 88 de Diferenciação Mieloide/deficiência , Mucosa Respiratória/microbiologia , Infecções Respiratórias/etiologia , Infecções Estreptocócicas/etiologia , Infecções Estreptocócicas/transmissão , Streptococcus pyogenes/fisiologia , Animais , Biópsia , Suscetibilidade a Doenças , Epitélio/patologia , Predisposição Genética para Doença , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Especificidade de Órgãos , Mucosa Respiratória/patologia , Infecções Respiratórias/patologia , Infecções Estreptocócicas/patologia
3.
Methods Mol Biol ; 2087: 43-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31728982

RESUMO

The development of new advances in understanding the role of neutrophils in inflammation requires effective procedures for isolating and purifying neutrophils. Methods for isolating human neutrophils are fairly standard, and some are covered in other chapters of this volume and previous editions. However, procedures for isolating neutrophils from nonhuman species used to model human diseases vary from those used in isolating human neutrophils and are not as well developed. Since neutrophils are highly reactive and sensitive to small perturbations, the methods of isolation are important to avoid isolation technique-induced alterations in cell function. We present methods here for reproducibly isolating highly purified neutrophils from large animal models (bovine, equine, ovine), small animal models (murine and rabbit), and nonhuman primates (cynomolgus macaques) and describe optimized details for obtaining the highest cell purity, yield, and viability.


Assuntos
Separação Celular , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Bovinos , Separação Celular/métodos , Sobrevivência Celular , Centrifugação com Gradiente de Concentração/métodos , Suscetibilidade a Doenças , Citometria de Fluxo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Coelhos , Especificidade da Espécie
4.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331954

RESUMO

Group A Streptococcus (GAS) commonly causes pharyngitis and skin infections. Little is known why streptococcal pharyngitis usually does not lead to pneumonia and why the skin is a favorite niche for GAS. To partially address these questions, the effectiveness of neutrophils in clearing wild-type (wt) M1T1 GAS strain MGAS2221 from the lung and from the skin was examined in murine models of intratracheal pneumonia and subcutaneous infection. Ninety-nine point seven percent of the MGAS2221 inoculum was cleared from the lungs of C57BL/6J mice at 24 h after inoculation, while there was no MGAS2221 clearance from skin infection sites. The bronchial termini had robust neutrophil infiltration, and depletion of neutrophils abolished MGAS2221 clearance from the lung. Phagocyte NADPH oxidase but not myeloperoxidase was required for MGAS2221 clearance. Thus, wt M1T1 GAS can be cleared by neutrophils using an NADPH oxidase-dependent mechanism in the lung. MGAS2221 induced robust neutrophil infiltration at the edge of skin infection sites and throughout infection sites at 24 h and 48 h after inoculation, respectively. Neutrophils within MGAS2221 infection sites had no nuclear staining. Skin infection sites of streptolysin S-deficient MGAS2221 ΔsagA were full of neutrophils with nuclear staining, whereas MGAS2221 ΔsagA infection was not cleared. Gp91phox knockout (KO) and control mice had similar GAS numbers at skin infection sites and similar abilities to select SpeB activity-negative (SpeBA-) variants. These results indicate that phagocyte NADPH oxidase-mediated GAS killing is compromised in the skin. Our findings support a model for GAS skin tropism in which GAS generates an anoxic niche to evade phagocyte NADPH oxidase-mediated clearance.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Pulmão/enzimologia , NADPH Oxidases/imunologia , Neutrófilos/enzimologia , Infecções Estreptocócicas/enzimologia , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Feminino , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Especificidade de Órgãos , Fagócitos/enzimologia , Fagócitos/imunologia , Pele/imunologia , Pele/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Estreptolisinas/deficiência , Estreptolisinas/genética , Estreptolisinas/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-30643894

RESUMO

We report the complete genome sequence for Streptococcus pyogenes strain 1838 (type emm3) isolated from a patient with toxic shock syndrome. The strain lacked the speK- and sla-encoding prophage frequently encountered among emm3 strains and possessed an Arg66His mutation in CovR of the 2-component virulence regulatory system CovRS.

6.
Jpn J Med (Lond) ; 1(6): 269-275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30556051

RESUMO

Group A Streptococcus (GAS) causes common pharyngitis and skin infections and occasional severe invasive infections. This review describes the recent progress on the pathogenesis of hypervirulent GAS. CovRS mutations are frequent among invasive GAS isolates and lead to hypervirulence. GAS CovRS mutants can be selected in vivo by neutrophils. The role of protease SpeB in source-sink dynamics of wild-type GAS and hypervirulent variants is discussed. Streptolysin S and PAF acetylhydrolase Sse critically and synergistically contribute to the inhibition of neutrophil recruitment by GAS CovS mutants. CovS mutations in emm3 GAS lead to the vascular invasion and enhance systemic GAS dissemination.

7.
Infect Immun ; 86(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29610254

RESUMO

Natural mutations of the two-component regulatory system CovRS are frequently associated with invasive group A Streptococcus (GAS) isolates and lead to the enhancement of virulence gene expression, innate immune evasion, systemic dissemination, and virulence. How CovRS mutations enhance systemic dissemination is not well understood. A hypervirulent GAS isolate of the emm3 genotype, MGAS315, was characterized using a mouse model of pulmonary infection to understand systemic dissemination. This strain has a G1370T mutation in the sensor kinase covS gene of CovRS. Intratracheal inoculation of MGAS315 led to the lung infection that displayed extensive Gram staining at the alveolar ducts, alveoli, and peribronchovascular and perivascular interstitium. The correction of the covS mutation did not alter the infection at the alveolar ducts and alveoli but prevented GAS invasion of the peribronchovascular and perivascular interstitium. Furthermore, the covS mutation allowed MGAS315 to disrupt and degrade the smooth muscle and endothelial layers of the blood vessels, directly contributing to systemic dissemination. It is concluded that hypervirulent emm3 GAS covS mutants can invade the perivascular interstitium and directly attack the vascular system for systemic dissemination.


Assuntos
Genótipo , Pneumopatias/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Animais , Bacteriemia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Feminino , Imunidade Inata , Pneumopatias/sangue , Pneumopatias/complicações , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/complicações , Virulência
8.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947648

RESUMO

Hypervirulent group A streptococcus (GAS) can inhibit neutrophil recruitment and cause systemic infection in a mouse model of skin infection. The purpose of this study was to determine whether platelet-activating factor acetylhydrolase Sse and streptolysin S (SLS) have synergistic contributions to inhibition of neutrophil recruitment and systemic infection in subcutaneous infection of mice by MGAS315, a hypervirulent genotype emm3 GAS strain. Deletion of sse and sagA in MGAS315 synergistically reduced the skin lesion size and GAS burden in the liver and spleen. However, the mutants were persistent at skin sites and had similar growth factors in nonimmune blood. Thus, the low numbers of Δsse ΔsagA mutants in the liver and spleen were likely due to their reduction in the systemic dissemination. Few intact and necrotic neutrophils were detected at MGAS315 infection sites. In contrast, many neutrophils and necrotic cells were present at the edge of Δsse mutant infection sites on day 1 and at the edge of and inside Δsse mutant infection sites on day 2. ΔsagA mutant infection sites had massive numbers of and few intact neutrophils at the edge and center of the infection sites, respectively, on day 1 and were full of intact neutrophils or necrotic cells on day 2. Δsse ΔsagA mutant infection sites had massive numbers of intact neutrophils throughout the whole infection site. These sse and sagA deletion-caused changes in the histological pattern at skin infection sites could be complemented. Thus, the sse and sagA deletions synergistically enhance neutrophil recruitment. These findings indicate that both Sse and SLS are required but that neither is sufficient for inhibition of neutrophil recruitment and systemic infection by hypervirulent GAS.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Proteínas de Bactérias/metabolismo , Genótipo , Fatores Imunológicos/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Streptococcus pyogenes/patogenicidade , Estreptolisinas/metabolismo , Fatores de Virulência/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Antígenos de Bactérias/genética , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Modelos Animais de Doenças , Deleção de Genes , Fígado/microbiologia , Camundongos Endogâmicos C57BL , Pele/microbiologia , Baço/microbiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/fisiopatologia , Streptococcus pyogenes/classificação , Estreptolisinas/genética
9.
Infect Immun ; 85(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27795364

RESUMO

Group A Streptococcus (GAS) acquires mutations of the virulence regulator CovRS in human and mouse infections, and these mutations result in the upregulation of virulence genes and the downregulation of the protease SpeB. To identify in vivo mutants with novel phenotypes, GAS isolates from infected mice were screened by enzymatic assays for SpeB and the platelet-activating factor acetylhydrolase Sse, and a new type of variant that had enhanced Sse expression and normal levels of SpeB production was identified (the variants had a phenotype referred to as enhanced Sse activity [SseA+] and normal SpeB activity [SpeBA+]). SseA+ SpeBA+ variants had transcript levels of CovRS-controlled virulence genes comparable to those of a covS mutant but had no covRS mutations. Genome resequencing of an SseA+ SpeBA+ isolate identified a C605A nonsense mutation in orphan kinase gene rocA, and 6 other SseA+ SpeBA+ isolates also had nonsense mutations or small indels in rocA RocA and CovS mutants had similar levels of enhancement of the expression of CovRS-controlled virulence genes at the exponential growth phase; however, mutations of RocA but not mutations of CovS did not result in the downregulation of speB transcription at stationary growth phase or in subcutaneous infection of mice. GAS with RocA and CovS mutations caused greater enhancement of the expression of hasA than spyCEP in mouse skin infection than wild-type GAS did. RocA mutants ranked between wild-type GAS and CovS mutants in skin invasion, inhibition of neutrophil recruitment, and virulence in subcutaneous infection of mice. Thus, GAS RocA mutants can be selected in subcutaneous infections in mice and exhibit gene expression patterns and virulences distinct from those of CovS mutants. The findings provide novel information for understanding GAS fitness mutations in vivo, virulence gene regulation, in vivo gene expression, and virulence.


Assuntos
Proteínas de Bactérias/genética , Códon sem Sentido/genética , Exotoxinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Transativadores/genética , Virulência/genética , Animais , Regulação para Baixo/genética , Feminino , Regulação Bacteriana da Expressão Gênica/genética , Histidina Quinase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/genética , Pele/microbiologia , Transcrição Gênica/genética
10.
PLoS One ; 11(9): e0162742, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611332

RESUMO

Group A Streptococcus (GAS) causes diverse infections ranging from common pharyngitis to rare severe invasive infections. Invasive GAS isolates can have natural mutations in the virulence regulator CovRS, which result in enhanced expression of multiple virulence genes, suppressed the expression of the protease SpeB, and increased virulence. It is believed that CovRS mutations arise during human infections with GAS carrying wild-type CovRS and are not transmissible. CovRS mutants of invasive GAS of the emm1 genotype arise readily during experimental infection in mice. It is possible that invasive GAS arises from pharyngeal GAS through rare genetic mutations that confer the capacity of mutated GAS to acquire covRS mutations during infection. The objective of this study was to determine whether contemporary pharyngeal emm1 GAS isolates have a reduced propensity to acquire CovRS mutations in vivo compared with invasive emm1 GAS and whether emm3, emm12, and emm28 GAS acquire CovRS mutants in mouse infection. The propensity of invasive and pharyngeal emm1 and invasive emm3, emm12, and emm28 SpeBA+ isolates to acquire variants with the SpeBA- phenotype was determined during subcutaneous infection of mice. The majority of both invasive and pharyngeal emm1 SpeBA+ isolates and two of three emm12 isolates, but not emm3 and emm28 isolates, were found to acquire SpeBA- variants during skin infection in mice. All analyzed SpeBA- variants of emm1 and emm12 GAS from the mouse infection acquired covRS mutations and produced more platelet-activating factor acetylhydrolase SsE. Thus, contemporary invasive and pharyngeal emm1 GAS isolates and emm12 GAS have a similar capacity to acquire covRS mutations in vivo. The rarity of severe invasive infections caused by GAS does not appear to be attributable to a reduced ability of pharyngeal isolates to acquire CovRS mutations.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Mutação/genética , Faringe/microbiologia , Streptococcus pyogenes/isolamento & purificação , Streptococcus pyogenes/metabolismo , Alelos , Animais , Feminino , Genótipo , Camundongos Endogâmicos C57BL , Faringe/patologia , Fenótipo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Tela Subcutânea/microbiologia , Tela Subcutânea/patologia
11.
Infect Immun ; 83(11): 4293-303, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283338

RESUMO

Invasive M1T1 group A Streptococcus (GAS) can have a mutation in the regulatory system CovRS, and this mutation can render strains hypervirulent. Interestingly, via mechanisms that are not well understood, the host innate immune system's neutrophils select spontaneous M1T1 GAS CovRS hypervirulent mutants, thereby enhancing the pathogen's ability to evade immune killing. It has been reported that the DNase Sda1 is critical for the resistance of M1T1 strain 5448 to killing in human blood and provides pressure for in vivo selection of CovRS mutations. We reexamined the role of Sda1 in the selection of CovRS mutations and in GAS innate immune evasion. Deletion of sda1 or all DNase genes in M1T1 strain MGAS2221 did not alter emergence of CovRS mutants during murine infection. Deletion of sda1 in strain 5448 resulted in Δsda1 mutants with (5448 Δsda1(M+) strain) and without (5448 Δsda1(M-) strain) M protein production. The 5448 Δsda1(M+) strain accumulated CovRS mutations in vivo and resisted killing in the bloodstream, whereas the 5448 Δsda1(M-) strain lost in vivo selection of CovRS mutations and was sensitive to killing. The deletion of emm and a spontaneous Mga mutation in MGAS2221 reduced and prevented in vivo selection for CovRS mutants, respectively. Thus, in contrast to previous reports, Sda1 is not critical for in vivo selection of invasive M1T1 CovRS mutants and GAS resistance to innate immune killing mechanisms. In contrast, M protein and other Mga-regulated proteins contribute to the in vivo selection of M1T1 GAS CovRS mutants. These findings advance the understanding of the progression of invasive M1T1 GAS infections.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Desoxirribonuclease I/imunologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Repressoras/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Animais , Desoxirribonuclease I/genética , Histidina Quinase , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulon , Proteínas Repressoras/imunologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
12.
PLoS One ; 10(6): e0129417, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047469

RESUMO

The M3 Serotype of Group A Streptococcus (GAS) is one of the three most frequent serotypes associated with severe invasive GAS infections, such as necrotizing fasciitis, in the United States and other industrialized countries. The basis for this association and hypervirulence of invasive serotype M3 GAS is not fully understood. In this study, the sequenced serotype M3 strain, MGAS315, and serotype M28 strain, MGAS6180, were characterized in parallel to determine whether contemporary M3 GAS has a higher capacity to invade soft tissues than M28 GAS. In subcutaneous infection, MGAS315 invaded almost the whole skin, inhibited neutrophil recruitment and TNF-α production, and was lethal in subcutaneous infection of mice, whereas MGAS6180 did not invade skin, induced robust neutrophil infiltration and TNF-α production, and failed to kill mice. In contrast to MGAS6180, MGAS315 had covS G1370T mutation. Either replacement of the covS1370T gene with wild-type covS in MGAS315 chromosome or in trans expression of wild-type covS in MGAS315 reduced expression of CovRS-controlled virulence genes hasA, spyCEP, and sse by >10 fold. MGAS315 covSwt lost the capacity to extensively invade skin and to inhibit neutrophil recruitment and had attenuated virulence, indicating that the covS G1370T mutation critically contribute to the hypervirulence of MGAS315. Under the background of functional CovRS, MGAS315 covSwt still caused greater lesions than MGAS6180, and, consistently under the background of covS deletion, MGAS6180 ΔcovS caused smaller lesions than MGAS315 ΔcovS. Thus, contemporary invasive M3 GAS has a higher capacity to evade neutrophil and TNF-α responses and to invade soft tissue than M28 GAS and that this skin-invading capacity of M3 GAS is maximized by natural CovRS mutations. These findings enhance our understanding of the basis for the frequent association of M3 GAS with necrotizing fasciitis.


Assuntos
Neutrófilos/metabolismo , Pele/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/genética , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteínas de Bactérias/genética , Citocinas/metabolismo , Exotoxinas/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mutação , Infiltração de Neutrófilos , Neutrófilos/microbiologia , Peptídeo Hidrolases/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorotipagem , Pele/microbiologia , Especificidade da Espécie , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/classificação , Streptococcus pyogenes/patogenicidade , Virulência/genética
13.
Infect Immun ; 83(7): 2796-805, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25916987

RESUMO

Group A Streptococcus (GAS) can cause life-threatening invasive infections, including necrotizing fasciitis. There are no effective treatments for severe invasive GAS infections. The platelet-activating factor (PAF) acetylhydrolase SsE produced by GAS is required for invasive GAS to evade innate immune responses and to invade soft tissues. This study determined whether the enzymatic activity of SsE is critical for its function in GAS skin invasion and inhibition of neutrophil recruitment and whether SsE is a viable target for immunotherapy for severe invasive GAS infections. An isogenic derivative of M1T1 strain MGAS5005 producing SsE with an S178A substitution (SsE(S178A)), an enzymatically inactive SsE mutant protein, was generated. This strain induced higher levels of neutrophil infiltration and caused smaller lesions than MGAS5005 in subcutaneous infections of mice. This phenotype is similar to that of MGAS5005 sse deletion mutants, indicating that the enzymatic activity of SsE is critical for its function. An anti-SsE IgG1 monoclonal antibody (MAb), 2B11, neutralized the PAF acetylhydrolase activity of SsE. Passive immunization with 2B11 increased neutrophil infiltration, reduced skin invasion, and protected mice against MGAS5005 infection. However, 2B11 did not protect mice when it was administered after MGAS5005 inoculation. MGAS5005 induced vascular effusion at infection sites at early hours after GAS inoculation, suggesting that 2B11 did not always have access to infection sites. Thus, the enzymatic activity of SsE mediates its function, and SsE has the potential to be included in a vaccine but is not a therapeutic target. An effective MAb-based immunotherapy for severe invasive GAS infections may need to target virulence factors that are critical for systemic survival of GAS.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/antagonistas & inibidores , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Imunização Passiva , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/enzimologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Feminino , Deleção de Genes , Imunoglobulina G/administração & dosagem , Camundongos Endogâmicos BALB C , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Análise de Sobrevida , Resultado do Tratamento
14.
PLoS One ; 9(6): e100744, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959723

RESUMO

The hemoglobin receptor IsdB rapidly acquires heme from methemoglobin (metHb) in the heme acquisition pathway of Staphylococcus aureus. IsdB consists of N-terminal segment (NS), NEAT1 (N1), middle (MD), and heme binding NEAT2 (N2) domains, and C-terminal segment (CS). This study aims to elucidate the roles of these domains or segments in the metHb/IsdB reaction. Deletion of CS does not alter the kinetics and equilibrium of the reaction. Sequential deletions of NS and N1 in NS-N1-MD-N2 progressively reduce heme transfer rates and change the kinetic pattern from one to two phases, but have no effect on the equilibrium of the heme transfer reaction, whereas further deletion of MD reduces the percentage of transferred metHb heme. MD-N2 has higher affinity for heme than N2. MD in trans reduces rates of heme dissociation from holo-N2 and increases the percentage of metHb heme captured by N2 by 4.5 fold. NS-N1-MD and N2, but not NS-N1, MD, and N2, reconstitute the rapid metHb/IsdB reaction. NS-N1-MD-NIsdC, a fusion protein of NS-N1-MD and the NEAT domain of IsdC, slowly acquires heme from metHb by itself but together with N2 results in rapid heme loss from metHb. Thus, NS-N1 and MD domains specifically and critically contribute to the kinetics and equilibrium of the metHb/IsdB reaction, respectively. These findings support a mechanism of direct heme acquisition by IsdB in which MD enhances the affinity of N2 for heme to thermodynamically drive heme transfer from metHb to IsdB and in which NS is required for the rapid and single phase kinetics of the metHb/IsdB reaction.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Heme/metabolismo , Metemoglobina/metabolismo , Domínios e Motivos de Interação entre Proteínas , Staphylococcus aureus/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cinética , Ligação Proteica , Proteínas Recombinantes , Staphylococcus aureus/genética
15.
Biochemistry ; 53(24): 3922-33, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24871270

RESUMO

The human pathogen Staphylococcus aureus acquires heme iron from hemoglobin (Hb) via the action of a series of iron-regulated surface determinant (Isd) proteins. The cell wall anchored IsdB protein is recognized as the predominant Hb receptor, and is comprised of two NEAr transporter (NEAT) domains that act in concert to bind, extract, and transfer heme from Hb to downstream Isd proteins. Structural details of the NEAT 2 domain of IsdB have been investigated, but the molecular coordination between NEAT 2 and NEAT 1 to extract heme from hemoglobin has yet to be characterized. To obtain a more complete understanding of IsdB structure and function, we have solved the 3D solution structure of the NEAT 1 domain of IsdB (IsdB(N1)) spanning residues 125-272 of the full-length protein by NMR. The structure reveals a canonical NEAT domain fold and has particular structural similarity to the NEAT 1 and NEAT 2 domains of IsdH, which also interact with Hb. IsdB(N1) is also comprised of a short N-terminal helix, which has not been previously observed in other NEAT domain structures. Interestingly, the Hb binding region (loop 2 of IsdB(N1)) is disordered in solution. Analysis of Hb binding demonstrates that IsdB(N1) can bind metHb weakly and the affinity of this interaction is further increased by the presence of IsdB linker domain. IsdB(N1) loop 2 variants reveal that phenylalanine 164 (F164) of IsdB is necessary for Hb binding and rapid heme transfer from metHb to IsdB. Together, these findings provide a structural role for IsdB(N1) in enhancing the rate of extraction of metHb heme by the IsdB NEAT 2 domain.


Assuntos
Proteínas de Transporte de Cátions/química , Hemoglobinas/metabolismo , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Antígenos de Bactérias/química , Proteínas de Transporte de Cátions/metabolismo , Heme/metabolismo , Hemoglobinas/química , Metemoglobina/química , Ressonância Magnética Nuclear Biomolecular , Fenilalanina/química , Receptores de Superfície Celular/química , Staphylococcus aureus/metabolismo
16.
Methods Mol Biol ; 1124: 19-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24504944

RESUMO

The development of new advances in the understanding of neutrophil biochemistry requires effective procedures for isolating purified neutrophil populations. Although methods for human neutrophil isolation are now standard, similar procedures for isolating neutrophils from many of the nonhuman species used to model human diseases are not as well developed. Since neutrophils are reactive cells, the method of isolation is extremely important to avoid isolation technique-induced alterations in cell function. We present methods here for reproducibly isolating highly purified neutrophils from large animals (bovine, equine, ovine), small animals (murine and rabbit), and nonhuman primates (cynomolgus macaques), and describe optimized details for obtaining the highest cell purity, yield, and viability. We also describe methods to verify phagocytic capacity in the purified cell populations using a flow cytometry-based phagocytosis assay.


Assuntos
Separação Celular/métodos , Neutrófilos/citologia , Animais , Bovinos , Cavalos , Humanos , Separação Imunomagnética/métodos , Macaca fascicularis , Camundongos , Neutrófilos/imunologia , Coelhos , Ovinos
17.
Infect Immun ; 82(4): 1579-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452689

RESUMO

Pathogen mutants arise during infections. Mechanisms of selection for pathogen variants are poorly understood. We tested whether neutrophils select mutations in the two-component regulatory system CovRS of group A Streptococcus (GAS) during infection using the lack of production of the protease SpeB (SpeB activity negative [SpeB(A-)]) as a marker. Depletion of neutrophils by antibodies RB6-8C5 and 1A8 reduced the percentage of SpeB(A-) variants (SpeB(A-)%) recovered from mice infected with GAS strain MGAS2221 by >76%. Neutrophil recruitment and SpeB(A-)% among recovered GAS were reduced by 95% and 92%, respectively, in subcutaneous MGAS2221 infection of CXCR2(-/-) mice compared with control mice. In air sac infection with MGAS2221, levels of neutrophils and macrophages in lavage fluid were reduced by 49% and increased by 287%, respectively, in CXCR2(-/-) mice compared with control mice, implying that macrophages play an insignificant role in the reduction of selection for SpeB(A-) variants in CXCR2(-/-) mice. One randomly chosen SpeB(A-) mutant outcompeted MGAS2221 in normal mice but was outcompeted by MGAS2221 in neutropenic mice and had enhancements in expression of virulence factors, innate immune evasion, skin invasion, and virulence. This and nine other SpeB(A-) variants from a mouse all had nonsynonymous covRS mutations that resulted in the SpeB(A-) phenotype and enhanced expression of the CovRS-controlled secreted streptococcal esterase (SsE). Our findings are consistent with a model that neutrophils select spontaneous covRS mutations that maximize the potential of GAS to evade neutrophil responses, resulting in variants with enhanced survival and virulence. To our knowledge, this is the first report of the critical contribution of neutrophils to the selection of pathogen variants.


Assuntos
Proteínas de Bactérias/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mutação , Neutrófilos/imunologia , Proteínas Quinases/genética , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/genética , Análise de Variância , Animais , Proteínas de Bactérias/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Cisteína Endopeptidases/metabolismo , Modelos Animais de Doenças , Exotoxinas/metabolismo , Feminino , Variação Genética , Evasão da Resposta Imune , Imunidade Inata/fisiologia , Fígado/microbiologia , Macrófagos/citologia , Camundongos , Camundongos Mutantes , Neutrófilos/citologia , Pele/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Virulência/genética
18.
Biomol NMR Assign ; 8(1): 201-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23686822

RESUMO

Staphylococcus aureus is an opportunistic pathogen that causes skin and severe infections in mammals. Critical to S. aureus growth is its ability to scavenge iron from host cells. To this effect, S. aureus has evolved a sophisticated pathway to acquire heme from hemoglobin (Hb) as a preferred iron source. The pathway is comprised of nine iron-regulated surface determinant (Isd) proteins involved in heme capture, transport, and degradation. A key protein of the heme acquisition pathway is the surface-anchored hemoglobin receptor protein IsdB, which is comprised of two NEAr transporter (NEAT) domains that act in concert to bind Hb and extract heme for subsequent transfer to downstream acquisition pathway proteins. Despite significant advances in the structural knowledge of other Isd proteins, the structural mechanisms and molecular basis of the IsdB-mediated heme acquisition process are not well understood. In order to provide more insights into the mode of function of IsdB, we have initiated NMR structural studies of the first NEAT domain of IsdB (IsdB(N1)). Herein, we report the near complete (1)H, (13)C and (15)N resonance assignments of backbone and side chain atoms, and the secondary structural topology of the 148-residue IsdB NEAT 1 domain. The NMR results are consistent with the presence of eight ß-strands and one α-helix characteristic of an immunoglobulin-like fold observed in other NEAT domain family proteins. This work provides a solid framework to obtain atomic-level insights toward understanding how IsdB mediates IsdB-Hb protein-protein interactions critical for heme capture and transfer.


Assuntos
Proteínas de Transporte de Cátions/química , Hemoglobinas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Receptores de Superfície Celular/química , Staphylococcus aureus/metabolismo , Isótopos de Carbono , Hidrogênio , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Virulence ; 4(8): 698-706, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24121654

RESUMO

Altered expression of Group A Streptococcus (GAS) virulence factors, including the M protein, can result as a consequence of spontaneous genetic changes that occur during laboratory and animal passage. Occurrence of such secondary mutations during targeted gene deletion could confound the interpretation of effects attributable to the function of the gene being investigated. Contradicting reports on whether the sagA/pel locus regulates the M protein-encoding emm might be due to inconsistent occurrence of mutations unrelated with sagA. This study examined the possibility that altered emm expression observed in association with sagA/pel deletion mutants is artifactual. sagA deletion mutants (MGAS2221ΔsagA) of M1T1 isolate MGAS2221 obtained using liquid broth for GAS growth during the deletion process had diminished emm transcription and no detectable M protein production. In contrast, a ΔsagA mutant of another closely genetically related M1T1 isolate had normal emm expression. The sagB gene does not regulate emm; however, one of three MGAS2221ΔsagB mutants had diminished emm expression. The emm regulator mga was downregulated in these M protein expression-negative strains. These results argue that sagA deletion does not directly cause the downregulation of emm expression. Indeed, two MGAS2221ΔsagA mutants obtained using agar plates for GAS growth during the deletion process both had normal emm expression. We conclude that the sagA/pel locus does not regulate emm expression in the M1T1 lineage and provide a protocol for targeted gene deletion that we find less prone to the generation of mutants exhibiting downregulation in emm expression.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes
20.
Biochemistry ; 52(37): 6537-47, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23980583

RESUMO

The heme-binding protein Shp of Group A Streptococcus rapidly transfers its heme to HtsA, the lipoprotein component of the HtsABC transporter, in a concerted two-step process with one kinetic phase. Heme axial residue-to-alanine replacement mutant proteins of Shp and HtsA (Shp(M66A), Shp(M153A), HtsA(M79A), and HtsA(H229A)) were used to probe the axial displacement mechanism of this heme transfer reaction. Ferric Shp(M66A) at high pH and Shp(M153A) have a pentacoordinate heme iron complex with a methionine axial ligand. ApoHtsA(M79A) efficiently acquires heme from ferric Shp but alters the reaction mechanism to two kinetic phases from a single phase in the wild-type protein reactions. In contrast, apoHtsA(H229A) cannot assimilate heme from ferric Shp. The conversion of pentacoordinate holoShp(M66A) into pentacoordinate holoHtsA(H229A) involves an intermediate, whereas holoHtsA(H229A) is directly formed from pentacoordinate holoShp(M153A). Conversely, apoHtsA(M79A) reacts with holoShp(M66A) and holoShp(M153A) in mechanisms with one and two kinetic phases, respectively. These results imply that the Met79 and His229 residues of HtsA displace the Met66 and Met153 residues of Shp, respectively. Structural docking analysis supports this mechanism of the specific axial residue displacement. Furthermore, the rates of the cleavage of the axial bond in Shp in the presence of a replacing HtsA axial residue are greater than that in the absence of a replacing HtsA axial residue. These findings reveal a novel heme transfer mechanism of the specific displacement of the Shp axial residues with the HtsA axial residues and the involvement of the HtsA axial residues in the displacement.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Dicroísmo Circular , Proteínas Ligantes de Grupo Heme , Concentração de Íons de Hidrogênio , Imidazóis/metabolismo , Cinética , Ligantes , Streptococcus pyogenes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA