RESUMO
Introduction: Obesity, which is associated with gut microbiota dysbiosis, low-grade chronic inflammation and intestinal barrier dysfunction, can cause a variety of chronic metabolic diseases. Phytochemical flavonoids have a variety of biological activities, among which there may be safe and effective anti-obesity solutions. Methods: We tested a plant-derived flavonoid hesperidin and fecal microbiota transplantation (FMT) to alleviate diet-induced obesity. High-fat diet (HFD)-fed mice were treated with hesperidin (100 and 200 mg/kg BW) and FMT. Results: Results indicated that hesperidin had the effects of reducing obesity as indicated by reduction of body weight, fat accumulation and blood lipids, reducing inflammation as indicated by reduction of pro-inflammation factors including TNFα, IL-6, IL-1ßand iNOS, and improving gut integrity as indicated by increasing colon length, reducing plasma gut permeability indicators iFABP and LBP, increased mRNA expression of mucus protein Muc2, tight junction p Claudin 2, Occludin and ZO-1 in the HFD-fed mice. The anti-obesity effects of hesperidin treatment have a dose-dependent manner. In addition, 16S rRNA-based gut microbiota analysis revealed that hesperidin selectively promoted the growth of Lactobacillus salivarius, Staphylococcus sciuri and Desulfovibrio C21_c20 while inhibiting Bifidobacterium pseudolongum, Mucispirillum schaedleri, Helicobacter ganmani and Helicobacter hepaticus in the HFD-fed mice. Horizontal feces transfer from the normal diet (ND)-fed mice to the HFD-fed mice conferred anti-obesity effects and transmitted some of the HFD-modulated microbes. Conclusion: We concluded that hesperidin and FMT both affect the reduction of body weight and improve HFD-related disorders in the HFD-fed mice possibly through modulating the composition of the gut microbiota.
RESUMO
BACKGROUND: The diffusion and perfusion parameters derived from intravoxel incoherent motion (IVIM) imaging provide promising biomarkers for noninvasively quantifying and managing various diseases. Nevertheless, due to the distribution gap between simulated and real datasets, the out-of-distribution (OOD) problem occurred in supervised learning-based methods degrades their performance and hinders their real applications. PURPOSE: To address the OOD problem in supervised methods and to further improve the accuracy and stability of IVIM parameter estimation, this work proposes a novel learning framework called IterANN, based on mean deviation prior (MDP) between training and estimated IVIM parameters on the test set. METHODS: Specifically, MDP indicates that the mean of the estimated IVIM parameters always locates between the mean of IVIM parameters in the test and train sets. In IterANN, we adopt a very simple artificial neural network (ANN) architecture of two hidden layers with 12 neurons per hidden layer, an input layer containing the signals acquired at multiple b-values and an output layer composed of three IVIM parameters ( D $D$ , F $F$ and D S t a r $DStar$ ). Inspired by MDP, the distribution of IVIM parameters in the training set (simulated data) is iteratively updated so that their mean gradually approaches the predicted values of the real data. This aims to achieve a strong correlation between the simulated data and the real data. To validate the effectiveness of IterANN, we compare it with several methods on both simulation and real acquisition datasets, including 21 healthy and 3 tumor subjects, in terms of residual errors of IVIM parameters or DW signals, the coefficients of variation (CV) of IVIM parameters, and the parameter contrast-to-noise ratio (PCNR) between normal and tumor tissues. RESULTS: On two simulation datasets, the proposed IterANN achieves the lowest residual error in IVIM parameters, especially in the case of low signal-to-noise ratio (SNR = 10), the residual error of D $D$ , F $F$ and D S t a r $DStar$ is decreased by 15.82 % / 14.92 % , 81.19 % / 74.04 % , 50.77 % / 1.549 % $15.82\%/14.92\%, 81.19\%/74.04\%, 50.77\%/1.549\%$ (Gaussian distribution /realistic distribution) respectively comparing to the suboptimal method. On real dataset, the IterANN achieves the highest PCNR when comparing the normal and tumor regions. Additionally, the proposed IterANN demonstrated better stability, with its CV being significantly lower than that of other methods in the vast majority of cases ( p < 0.01 $p<0.01$ , paired-sample Student's t-test). CONCLUSIONS: The superior performance of IterANN demonstrates that updating the distribution of the train set based on MDP can effectively solve the OOD problem, which allows us not only to improve the accuracy and stability of the estimated IVIM parameters, but also to increase the potential of IVIM in disease diagnosis.
RESUMO
A novel magnetic nanomaterial with Fe3O4 as the core, PS-DVB as the shell layer, and the surface modified with C18 (C18-PS-DVB-Fe3O4) had been synthesized by seeded emulsion polymerization. C18-PS-DVB-Fe3O4 retains the advantages of the chemical stability, large porosity, and uniform morphology of organic polymers and has the magnetic properties of Fe3O4. A simple, flexible, and efficient magnetic dispersive solid phase extraction (Mag-dSPE) method for the extraction of preservatives, sweeteners, and colorants in river water was established. C18-PS-DVB-Fe3O4 was used as an adsorbent for Mag-dSPE and was coupled with high-performance liquid chromatography (HPLC) to detect 11 food additives: acesulfame, amaranth, benzoic acid, tartrazine, saccharin sodium, sorbic acid, dehydroacetic acid, sunset yellow, allura red, brilliant blue, and erythrosine. Under the optimum extraction conditions, combined with ChromCoreTMAQC18 (5 µm, 4.6 × 250 mm), 20 mmol/L ammonium acetate aqueous solution and methanol were used as mobile phases, and the detection wavelengths were 240 nm and 410 nm. The limits of detection (LODs) of 11 food additives were 0.6-3.1 µg/L with satisfactory recoveries ranging from 86.53% to 106.32%. And the material could be reused for five cycles without much sacrifice of extraction efficiency. The proposed method has been used to determine food additives in river water samples, and results demonstrate the applicability of the proposed C18-PS-DVB-Fe3O4 Mag-dSPE coupled with the HPLC method to environment monitoring analysis.
RESUMO
Peroxymonosulfate (PMS) activation on efficient catalysts is a promising strategy to produce sulfate radical (SO4-) and singlet oxygen (1O2) for the degradation of refractory organic pollutants. It is a great challenge to selectively generate these two reactive oxygen species, and the regulation mechanism from non-radical to radical pathway and vice versa is not well established. Here, we report a strategy to regulate the activation mechanism of PMS for the selective generation of SO4- and 1O2 with 100 % efficiency by sulfur-doped cobalt cubic assembly catalysts that was derived from the Co-Co Prussian blue analog precursor. This catalyst showed superior catalytic performance in activating PMS with normalized reaction rate increased by 87 times that of the commercial Co3O4 nanoparticles and had much lower activation energy barrier for the degradation of organic pollutant (e.g., p-chlorophenol) (18.32 kJâ mol-1). Experimental and theoretical calculation results revealed that S doping can regulate the electronic structure of Co active centers, which alters the direction of electron transfer between catalyst and PMS. This catalyst showed a strong tolerance to common organic compounds and anions in water, wide environmental applicability, and performed well in different real-water systems. This study provides new opportunities for the development of metal catalyst with metal-organic frameworks structure and good self-regeneration ability geared specifically towards PMS-based advanced oxidation processes applied for water remediation.
RESUMO
The medial entorhinal cortex (MEC) is crucial for contextual memory, yet its role in context-induced retrieval of morphine withdrawal memory remains unclear. This study investigated the role of the MEC and its projection neurons from MEC layer 5 to the basolateral amygdala (BLA) (MEC-BLA neurons) in context-induced retrieval of morphine withdrawal memory. Results show that context activates the MEC in morphine withdrawal mice, and the inactivation of the MEC inhibits context-induced retrieval of morphine withdrawal memory. At neural circuits, context activates MEC-BLA neurons in morphine withdrawal mice, and the inactivation of MEC-BLA neurons inhibits context-induced retrieval of morphine withdrawal memory. But MEC-BLA neurons are not activated by conditioning of context and morphine withdrawal, and the inhibition of MEC-BLA neurons do not influence the coupling of context and morphine withdrawal memory. These results suggest that MEC-BLA neurons are critical for the retrieval, but not for the formation, of morphine withdrawal memory.
RESUMO
Advanced oxidation processes (AOPs) are the most efficient water cleaning technologies, but their applications face critical challenges in terms of mass/electron transfer limitations and catalyst loss/deactivation. Bipolar electrochemistry (BPE) is a wireless technique that is promising for energy and environmental applications. However, the synergy between AOPs and BPE has not been explored. In this study, by combining BPE with AOPs, we develop a general approach of using carbon nanotubes (CNTs) as electric-field-induced bipolar electrodes to control electron transfer for efficient water purification. This approach can be used for permanganate and peroxide activation, with superior performances in the degradation of refractory organic pollutants and excellent durability in recycling and scale-up experiments. Theoretical calculations, in situ measurements, and physical experiments showed that an electric field could substantially reduce the energy barrier of electron transfer over CNTs and induce them to produce bipolar electrodes via electrochemical polarization or to form monopolar electrodes through a single particle collision effect with feeding electrodes. This approach can continuously provide activated electrons from one pole of bipolar electrodes and simultaneously achieve "self-cleaning" of catalysts through CNT-mediated direct oxidation from another pole of bipolar electrodes. This study provides a fundamental scientific understanding of BPE, expands its scope in the environmental field, and offers a general methodology for water purification.
Assuntos
Eletrodos , Nanotubos de Carbono , Oxirredução , Purificação da Água , Nanotubos de Carbono/química , Purificação da Água/métodos , CatáliseRESUMO
Objective: This study aimed to compare the outcomes of unilateral biportal endoscopy, unilateral laminectomy bilateral decompression (UBE-ULBD), and open lumbar decompression (OLD) in patients with lumbar epidural lipomatosis (LEL). Methods: This prospective observational study was conducted from March 2019 to May 2022 and encompassed 33 patients with LEL who underwent lumbar decompression. The study included 15 cases of UBE-ULBD decompression and 18 cases of open decompression, which were followed up for 1 year. The baseline characteristics, initial clinical manifestations, and surgical details [including estimated blood loss (EBL) and preoperative complications] of all patients were recorded. Radiographic evaluation included the cross-sectional area (CSA) of the thecal sac and paraspinal muscles on MRI. Clinical results were analyzed using the Short Form-36 Score (SF-36), the Numeric Pain Rating Scale (NRS) for lumbar and leg pain, creatine kinase, the Roland and Morris Disability Questionnaire (RMDQ), and the Oswestry Disability Index (ODI). Results: The dural sac CSA increased considerably at the 1-year postoperative follow-up in both groups (p < 0.001). The operative duration in the OLD group (48.2 ± 7.2 min) was shorter than that in the UBE-ULBD group (67.7 ± 6.3 min, p < 0.001). The OLD group (97.2 ± 19.8 mL) was associated with more EBL than the UBE-ULBD group (40.6 ± 13.6 mL, p < 0.001). The duration of hospitalization in the OLD group (5.4 ± 1.3 days) was significantly longer compared with the UBE-ULBD group (3.5 ± 1.2 days, p < 0.01). The SF-36, NRS, RMDQ, and ODI scores improved in both groups postoperatively (p < 0.001). Serum creatine kinase values in the UBE-ULBD group (101.7 ± 15.5) were significantly lower than those in the OLD group (330.8 ± 28.1 U/L) 1 day after surgery (p < 0.001). The degree of paraspinal muscle atrophy in the UBE-ULBD group (4.81 ± 1.94) was significantly lower than that in the OLD group (12.15 ± 6.99) at 1 year (p < 0.001). Conclusion: UBE-ULBD and OLD demonstrated comparable clinical outcomes in treating LEL. However, UBE-ULBD surgery was associated with shorter hospital stays, lower rates of incision infection, lighter paravertebral muscle injury, and lower EBL than OLD surgery. Consequently, UBE-ULBD can be recommended in patients with LEL if conservative treatment fails.
RESUMO
In this work, we report a new generation of single microbead bioassay that employs a single BaTiO3 microbead as an optical booster for target biomarker enrichment and optical enhancement toward protein and nucleic acid analysis. The single BaTiO3 microbead can not only concentrate the target molecules by nearly 104-fold but also act as an optical booster to prominently enhance the target-induced fluorescence signal by the whispering gallery mode for improving the excitation efficiency and the microlens effect for promoting the signal collecting efficiency, respectively. Compared with using a conventional single microbead, this optical booster exhibits nearly 2 orders of magnitude higher sensitivity without the assistance of any signal amplification techniques or costly instruments. Moreover, this single microbead optical booster is capable of detecting different kinds of protein and nucleic acid biomarkers in a simple mix-and-read manner, holding great potential for early clinical diagnosis.
Assuntos
Compostos de Bário , Técnicas Biossensoriais , Titânio , Compostos de Bário/química , Titânio/química , Fluorescência , Humanos , Espectrometria de FluorescênciaRESUMO
The layer-dependent Chern number (C) in MnBi_{2}Te_{4} is characterized by the presence of a Weyl semimetal state in the ferromagnetic coupling. However, the influence of a key factor, namely, the exchange coupling, remains unexplored. This study focuses on characterizing the C=2 state in MnBi_{2}Te_{4}, which is classified as a higher C state resulting from the anomalous n=0 Landau levels (LLs). Our findings demonstrate that the exchange coupling parameter strongly influences the formation of this Chern state, leading to a competition between the C=1 and 2 states. Moreover, the emergence of odd-even LL sequences, resulting from the breaking of LL degeneracy, provides compelling evidence for the strong exchange coupling strength. These findings highlight the significance of the exchange coupling in understanding the behavior of Chern states and LLs in magnetic quantum systems.
RESUMO
A series of NH2-functionalized nano-sized magnetic metal-organic frameworks (MOFs) were prepared in this study for Cr(VI) removal from wastewater. It was observed that not only the morphological, i.e., orientation growth of N-doped and iron-based metal-organic frameworks, but also the adsorption of magnetic MOFs is largely related to the used amount of ammonium hydroxide in preparation. For example, with increasing amounts of ammonium hydroxide used in preparation, the morphology of magnetic MOFs changed from spherical to cube and triangular cone. Moreover, the maximum adsorption capacity of spherical-magnetic MOFs, cubic-magnetic MOFs and triangular cone-magnetic MOFs could be up to 204.08 mg/g, 232.56 mg/g and 270.27 mg/g, respectively. Under optimal conditions, the adsorption process of magnetic MOFs for Cr(VI) was consistent with the pseudo-second-order rate equation (R2 = 1) and Langmuir isotherm model (R2 > 0.99). Therefore, magnetic MOFs developed in this work offered a viable option for the removal of Cr(VI) from wastewater.
RESUMO
Leather shavings are generated as solid waste in the leather industry and may cause environmental pollution if not disposed judiciously. These solid wastes, primarily composed of collagen fibers (CFs), can be recycled as biomass composites. However, CFs are incompatible with natural rubber (NR) due to its hydrophilicity. Conventionally, the compatibility has been improved by utilizing silane coupling agents (SCAs) along with a large number of organic solvents, which further contribute to environmental pollution. In this study, we developed a novel complex coupling agent (CCA) to enhance the compatibility between CF and NR. The CCA was synthesized through a coordination reaction between Cr(III) and α-methacrylic acid (MAA). Cr(III) in the coupling agent coordinates with the active groups in CFs, while the unsaturated double bonds in MAA facilitate covalent crosslinking between the CCA and NR, improving compatibility. The coordination bonding between CF and NR exhibits strong interfacial interaction, endowing the composites with desirable mechanical properties. Moreover, the proposed method is an economical and green approach that can be used to synthesize CF-based composites without requiring organic solvents. Herein, a strategy promoted sustainable development in the leather industry has been established.
Assuntos
Resíduos Industriais , Borracha , Borracha/química , Resíduos Sólidos , Colágeno , SolventesRESUMO
CRISPR/Cas12a system has attracted extensive concern in biosensing due to its high specificity and programmability. Nevertheless, existing Cas12a-based assays mainly focus on nucleic acid detection and have limitations in non-nucleic acid biomarker analysis. To broaden the application prospect of the CRISPR/Cas technology, a cascade Cas12a biosensing platform is reported by combining dual-functionalized gold nanoparticles (FGNPs)-assisted rolling circle amplification (RCA) and Cas12a trans-cleavage activity (GAR-Cas) for ultrasensitive protein and exosome analysis. FGNPs serve as a critical component in the transduction of protein or exosome recognition information into nucleic acid amplification events to produce Cas12a activators. In the GAR-Cas assay, by integrating the triple cascade amplification of FGNPs-assisted transduction, RCA, and Cas12a signal amplification, ultralow abundance of target molecules can arouse numerous concatemers to activate Cas12a trans-cleavage activity to release intense fluorescence, allowing the ultrasensitive detection of as low as 1 fg/mL (â¼41 aM) cTnI and 5 exosomes per µL. Furthermore, the presented strategy can be applied to detect exosome levels from clinical samples, showing excellent performance in distinguishing cancer patients from healthy individuals. The GAR-Cas sensing platform exhibits great potential in clinical diagnosis and enlarges biosensing toolboxes based on CRISPR/Cas technology for non-nucleic acid target analysis.
Assuntos
Técnicas Biossensoriais , Exossomos , Nanopartículas Metálicas , Ácidos Nucleicos , Humanos , Sistemas CRISPR-Cas , Exossomos/genética , OuroRESUMO
The tumor microenvironment is reprogrammed by cancer cells and participates in all stages of tumor progression. Neutral ceramidase is a key regulator of ceramide, the central intermediate in sphingolipid metabolism. The contribution of neutral ceramidase to the reprogramming of the tumor microenvironment is not well understood. Here, we find that deletion of neutral ceramidase in multiple breast cancer models in female mice accelerates tumor growth. Our result show that Ly6C+CD39+ tumor-infiltrating CD8 T cells are enriched in the tumor microenvironment and display an exhausted phenotype. Deletion of myeloid neutral ceramidase in vivo and in vitro induces exhaustion in tumor-infiltrating Ly6C+CD39+CD8+ T cells. Mechanistically, myeloid neutral ceramidase is required for the generation of lipid droplets and for the induction of lipolysis, which generate fatty acids for fatty-acid oxidation and orchestrate macrophage metabolism. Metabolite ceramide leads to reprogramming of macrophages toward immune suppressive TREM2+ tumor associated macrophages, which promote CD8 T cells exhaustion.
Assuntos
Neoplasias , Ceramidase Neutra , Animais , Feminino , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Ceramidas/metabolismo , Macrófagos/metabolismo , Reprogramação Metabólica , Ceramidase Neutra/metabolismo , Microambiente TumoralRESUMO
Zero-valent iron (ZVI) reduction represents a promising methodology for water remediation, but its broad application is limited by two critical challenges (i.e., aggregation and passivation). Here, we report a hybrid strategy of photochemical-promoted ZVI reduction with high efficiency and reduction capacity for removing coexisting refractory pollutants in water. A composite material with Pd/Fe bimetallic nanoparticles supported onto semiconducting metal oxide (Pd/Fe@WO3-GO) was prepared and subsequently used as the model catalyst. By using the developed strategy with visible light as light source, this catalyst showed a remarkable catalytic performance for simultaneously eliminating 4-chlorophenol (4-CP) and Cr(VI), with dehalogenation rate as high as 0.43 min-1, outperforming the reported ZVI-based catalysts. A synergistic interaction of photocatalysis and ZVI reduction occurred in this strategy, where the interfacial electron transfer on particles surface were greatly strengthened with light irradiation. The activation was attributed to the dual functions of semiconducting material as support to disperse Pd/Fe nanoparticles and as (photoexcited) electron donor to directly trigger reduction reactions and/or indirectly inhibit the formation of oxides passivation layer. Both direct electron transfer and H*-mediated indirect electron transfer mechanisms were confirmed to participate in the reduction of pollutants, while the later was quantitatively demonstrated as the predominant reaction route. Importantly, this strategy showed a wide pH applicability, long-term durability and excellent catalytic performance in different real-water systems. This work provides new insights into ZVI reduction and advances its applications for the removal of combined organic and inorganic pollutants. The developed photochemical-promoted ZVI reduction strategy holds a great potential for practical applications.
RESUMO
A dramatic shift in the global food system is occurring with the rapid growth of ultra-processed foods (UPFs) consumption, which poses potentially serious health risks. Systematic review (SR) method has been used to summarise the association between UPF consumption and multiple health outcomes; however, a suboptimal-quality SR may mislead the decision-making in clinical practices and health policies. Therefore, a methodological review was conducted to identify the areas that can be improved regarding the risk of bias and reporting quality of relevant SRs. Systematic searches to collect SRs with meta-analyses of UPFs were performed using four databases from their inception to April 14, 2023. The risk of bias and reporting quality were evaluated using ROBIS and PRISMA 2020, respectively. The key characteristics of the included SRs were summarised descriptively. Excel 2019 and R 4.2.3 were used to analyse the data and draw graphs. Finally, 16 relevant SRs written in English and published between 2020 and 2023 in 12 academic journals were included. Only one SR was rated as low risk of bias, and the others were rated as higher risk of bias mainly because the risk of bias in the original studies was not explicitly addressed when synthesising the evidence. The reporting was required to be advanced significantly, involving amendments of registration and protocol, data and analytic code statement, and lists of excluded studies with justifications. The reviews' results could improve the quality, strengthen future relevant SRs' robustness, and further underpin the evidence base for supporting clinical decisions and health policies.
Assuntos
Alimento Processado , Projetos de Pesquisa , Humanos , ViésRESUMO
Context-induced retrieval of drug withdrawal memory is one of the important reasons for drug relapses. Previous studies have shown that different projection neurons in different brain regions or in the same brain region such as the basolateral amygdala (BLA) participate in context-induced retrieval of drug withdrawal memory. However, whether these different projection neurons participate in the retrieval of drug withdrawal memory with same or different molecular pathways remains a topic for research. The present results showed that (1) BLA neurons projecting to the prelimbic cortex (BLA-PrL) and BLA neurons projecting to the nucleus accumbens (BLA-NAc) participated in context-induced retrieval of morphine withdrawal memory; (2) there was an increase in the expression of Arc and pERK in BLA-NAc neurons, but not in BLA-PrL neurons during context-induced retrieval of morphine withdrawal memory; (3) pERK was the upstream molecule of Arc, whereas D1 receptor was the upstream molecule of pERK in BLA-NAc neurons during context-induced retrieval of morphine withdrawal memory; (4) D1 receptors also strengthened AMPA receptors, but not NMDA receptors, -mediated glutamatergic input to BLA-NAc neurons via pERK during context-induced retrieval of morphine withdrawal memory. These results suggest that different projection neurons of the BLA participate in the retrieval of morphine withdrawal memory with diverse molecular pathways.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Morfina , Neurônios , Núcleo Accumbens , Síndrome de Abstinência a Substâncias , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Masculino , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia , Morfina/farmacologia , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Memória/fisiologia , Receptores de AMPA/metabolismo , Ratos , Dependência de Morfina/metabolismo , Tonsila do Cerebelo/metabolismo , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vias Neurais/metabolismo , Córtex Pré-Frontal/metabolismoRESUMO
Background: Uncemented short stems have been shown to optimize load distribution on the proximal femur, reducing stress shielding and preserving bone mass. However, they may adversely affect the initial stability of the stems. To date, most research conducted on short stems has predominantly centered on uncemented stems, leaving a notable dearth of investigations encompassing cemented stems. Therefore, this study aimed to investigate the length of cemented stems on the transmission of femoral load patterns and assess the initial stability of cemented short stems. Method: A series of finite element models were created by gradient truncation on identical cemented stem. The impact of varying lengths of the cemented stem on both the peak stress of the femur and the stress distribution in the proximal femur (specifically Gruen zones 1 and 7) were assessed. In addition, an experimental biomechanical model for cemented short stem was established, and the initial stability was measured by evaluating the axial irreversible displacement of the stem relative to the cement. Result: The maximum von-Mises stress of the femur was 58.170 MPa. Spearman correlation analysis on the shortened length and von-Mises stress of all nodes in each region showed that the p-values for all regions were less than 0.0001, and the correlation coefficients (r) for each region were 0.092 (Gruen Zone 1) and 0.366 (Gruen Zone 7). The result of the biomechanical experiment showed that the irreversible axial displacement of the stem relative to cement was -870 µm (SD 430 µm). Conclusion: Reducing the length of a cemented stem can effectively enhance the proximal load of the femur without posing additional fracture risk. Moreover, the biomechanical experiment demonstrated favorable initial stabilities of cemented short stems.
RESUMO
Low temperature and cold damage are natural factors that seriously reduce wheat yield. Thus, how to improve the cold resistance of wheat has been the focus of wheat breeders and geneticists. However, the genetic improvement for this trait has been slow, mainly because cold resistance is a complex quantitative trait and field phenotypic identification is relatively difficult. Therefore, the discovery, mapping, and cloning of the cold resistance genes of wheat provide a theoretical basis for the genetic improvement of wheat against cold resistance and facilitate the analysis of the molecular mechanisms of cold resistance in wheat. This study used the wheat line H261 and its EMS mutants LF2099 and XiNong 239 as materials. Cold trait segregation occurred in the F2 generation of mutants LF2099 and XiNong 239 at a 15:1 separation ratio. Genetic analysis showed that two dominant overlapping genes, temporarily named Wcr-3 and Wcr-4, control cold resistance in wheat. Furthermore, a combined BSA and SNP array established that Wcr-3 is between BU100519 (SSR marker) and AX-94843669 (SNP marker). The markers are 1.32 cM apart, corresponding to the 5.41 Mb physical interval on the Chinese Spring 2B chromosome with 67 functionally annotated genes. Wcr-4 is located between AX-94657955 (SNP marker) and LC-23 (SSR marker), which are 1.79 cM apart, corresponding to a 2.35 Mb physical interval on the Chinese Spring 2D chromosome, which contains 66 functionally annotated genes. Wcr-3 and Wcr-4 are two new cold resistance genes, laying the foundation for their fine mapping and cloning. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01425-w.
RESUMO
CONTEXT: Berberine is a potential drug that can effectively treat cardiovascular diseases, including premature ventricular contractions (PVCs). OBJECTIVE: This study was conducted to assess the efficacy and safety of berberine for PVCs. METHODS: The literature was searched using PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), Wanfang, and Chinese Biomedical Literature Database (CBM) for randomized controlled trials (RCTs) from inception to October 1, 2022. The risk of bias was assessed using the Revised Cochrane risk-of-bias tool for randomized trials, and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system was adopted to assess the quality of evidence. RESULTS: Ten RCTs with 896 participants were included in the meta-analysis. The results showed that compared to antiarrhythmic drugs (AD), berberine (BE) combined with AD had a higher effective rate (RR = 1.26; 95% CI:1.12, 1.42; p = 0.0001) with no significant incidence of adverse reactions (RR = 0.93; 95% CI:0.33, 2.57; p = 0.88), and BE alone had no significant difference in effective rate (RR = 0.91; 95% CI:0.77, 1.07; p = 0.23), and a lower incidence of adverse reactions (RR = 0.38; 95% CI:0.15, 0.97; p = 0.04) and recurrence rate (RR = 0.40; 95% CI:0.18, 0.88; p = 0.02). CONCLUSIONS: The results suggest that BE is an effective and safe adjunctive method for PVCs. In addition, BE is recommended for patients with PVCs who had severe adverse reactions after administrating AD as an alternative therapy.
Assuntos
Berberina , Medicamentos de Ervas Chinesas , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Berberina/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , ChinaRESUMO
The CRISPR/Cas12a system exhibits extraordinary capability in the field of biosensing and molecular diagnosis due to its trans-cleavage ability. However, it is still desirable for precise control and programmable regulation of Cas12a trans-cleavage activity to promote the in-depth studies and application expansion of Cas12a-based sensing platforms. In this work, we have developed a new and robust CRISPR/Cas12a regulation mechanism by endowing the activator with the function of caging crRNA ingeniously. Specifically, we constructed an integrated elongation-caged activator (EL-activator) by extending the ssDNA activator on the 3'-end. We found that appending only about 8 nt that is complementary to the crRNA repeat region is enough to cage the crRNA spacer/repeat region, thus effectively inhibiting Cas12a trans-cleavage activity. The inner inhibition mechanism was further uncovered after a thorough investigation, demonstrating that the EL-activator works by impeding the conformation of crRNA required for Cas12a recognition and destroying its affinity with Cas12a. By further switching on the elongated moiety on the EL-activator using target biomarkers, the blocked trans-cleavage activity of Cas12a can be rapidly recovered. Finally, a versatile sensing platform was established based on the EL-activator regulation mechanism, expanding the conventional Cas12a system that only directly recognizes DNA to the direct detection of enzymes and RNA biomarkers. This work has enriched the CRISPR/Cas12a regulation toolbox and expanded its sensing applications.