RESUMO
During robot-assisted reduction of pelvic fracture, blood vessels are susceptible to tensile and shear forces, making them prone to injury. Considering the impact of pelvic reduction on the risk of arterial injury, the biomechanical characteristics of arteries during the pelvic fracture reduction process are studied, and a refined coupled composite model of the damaged pelvic structure is established. Dynamic simulations of pelvic fracture reduction are conducted based on the planned reduction path. The simulation results show that during the reduction process, when the affected side is rotated, the stress and strain of the artery are maximum, particularly at the locations of the iliac common artery, internal iliac artery, and the superior gluteal artery arch endure significant stress and strain. After reduction, the maximum stress is observed in the right superior gluteal artery, and the maximum strain occurs at the intersection of the right iliac common artery. The stretch ratio of both the left and right iliac common arteries is considerable. Therefore, it can be concluded that the superior gluteal artery and the internal iliac artery are prone to injury, particularly the segment from the origin of the superior gluteal artery to its passage around the greater sciatic notch. After reduction, substantial traction on the iliac common artery, which makes it more susceptible to deformation, carries a risk of arterial rupture and aneurysm formation. This study provides a reference for planning the safe reduction path of pelvic fracture surgery and improving safety.
RESUMO
In the title compound, C(10)H(10)N(2)O(3), an inter-mediate in the synthesis of anthranilamide insecticides, all the non-H atoms except the nitro-group O atom lie on a crystallographic mirror plane. The H atoms of the methyl group are disordered over two sets of sites with equal occupancies. In the crystal structure, C-Hâ¯N links lead to chains of mol-ecules propagating in [100].