Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Mater ; 18(2)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36758244

RESUMO

The development of novel antibacterial nano-materials with synergistic biological effects has attracted extensive interest of the researchers. In the study, 0.5 mol% Ag and 0.5 mol% Cu co-doped K2Ti6O13(0.5 Ag-0.5 Cu-KTO) nanomaterial was successfully synthesized using two-step method of sol-gel and hydrothermal synthesis. The crystal structure of 0.5 Ag-0.5 Cu-KTO was the same as that of monoclinic K2Ti6O13. Ag ions and Cu ions were uniformly loaded on K2Ti6O13by replacing partial Ti ions, so that these antibacterial ions could be slowly released. High specific surface area of 0.5 Ag-0.5 Cu-KTO (337.6 m2g-1) provided more surface active sites for Ag-Cu doping and adsorption. More negative surface zeta potential (-32.83 mV in phosphate buffer solution and -21.45 mV in physiological saline solution, respectively) would be beneficial to prevent the aggregation of the nanowires in physiological environment. Under the same doping amount, compared to 1.0 mol% Cu doped K2Ti6O13, 0.5 Ag-0.5 Cu-KTO exhibited better antibacterial performance against gram-positive and gram-negative bacteria at only 100 µg ml-1dose concentration, near to 1.0 mol% Ag doped K2Ti6O13(1.0 Ag-KTO). And 0.5 Ag-0.5 Cu-KTO showed more excellent biocompatibility than 1.0 Ag-KTO, which was attribute to the introduction of Cu ions effectively decreasing the hemolytic and cytotoxic risks from Ag ions. As expected, the synthesized 0.5 Ag-0.5 Cu-KTO nanowires demonstrated excellent structural stability, high antibacterial activity, good hemocompatibility and cytocompatibility owing to the synergistic effects of Cu and Ag ions. 0.5 Ag-0.5 Cu-KTO nanowires will be a promising antimicrobial candidate for biomedical applications.


Assuntos
Antibacterianos , Nanofios , Antibacterianos/química , Titânio/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA