Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Med Genomics ; 17(1): 96, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650036

RESUMO

BACKGROUND: The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS: Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS: The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION: Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.


Assuntos
Linfangioma Cístico , Análise de Célula Única , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Linfangioma Cístico/genética , Linfangioma Cístico/metabolismo , Linfangioma Cístico/patologia , Feminino , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Análise de Sequência de RNA , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Transcriptoma
2.
Genes (Basel) ; 14(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37895220

RESUMO

(1) Purpose: Retrospective back-to-back comparisons were performed to evaluate the accuracy, effectiveness, and incremental yield of chromosome microarray analysis (CMA) and exome sequencing (ES) analysis in fetuses with digestive system malformations (DSMs). (2) Methods: In total, 595 women with fetal DSMs who underwent prenatal diagnosis were enrolled. We analyzed the diagnostic yields of CMA and ES and evaluated pregnancy outcomes. Copy number variants (CNVs) were classified according to the American College of Medical Genetics and Genomics guidelines. (3) Results: Pathogenic CNVs were detected in 11/517 (2.12%) fetuses, and variants of unknown significance (VUS) were identified in 69 (13.35%) fetuses using CMA. ES detected 29 pathogenic/likely pathogenic variants in 23/143 (16.08%) fetuses and 26/143 (18.2%) VUS. In those with other ultrasound abnormalities, the detection rate of multiple system structural malformations was 41.2%, followed by skeletal (33.3%), cardiovascular (25.4%), and central nervous system (18.6%) malformations. Of the 391 surviving children, 40 (10.2%) exhibited varying degrees of mental retardation. (4) Conclusion: A correlation exists between DSMs and chromosomal abnormalities. When combined with other systemic abnormalities, the incidence of chromosomal abnormalities increases significantly. Patients with congenital DSM are at risk of developing neurodevelopmental disorders. Combined CMA and ES detection of fetal DSM has good clinical application potential.


Assuntos
Anormalidades Múltiplas , Diagnóstico Pré-Natal , Gravidez , Criança , Humanos , Feminino , Sequenciamento do Exoma , Estudos Retrospectivos , Feto/anormalidades , Aberrações Cromossômicas , Análise em Microsséries , Cromossomos , Sistema Digestório
3.
Biochem Biophys Rep ; 35: 101505, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37435360

RESUMO

Congenital heart disease (CHD) is a serious condition with unknown etiology. In a recent study, a compound heterozygous mutation (c.3526C > T [p.Arg1176Trp] and c.4643A > G [p.Asp1548Gly]) in the ASXL3 gene was identified, which is associated with CHD. This mutation was overexpressed in HL-1 mouse cardiomyocyte cells, leading to increased cell apoptosis and decreased cell proliferation. However, whether this effect is mediated by long noncoding RNAs (lncRNAs) is yet to be determined. We identified the differences among lncRNA and mRNA profiles in mouse heart tissues using sequencing to explore this issue. We detected HL-1 cell proliferation and apoptosis through CCK8 and flow cytometry. Fgfr2, lncRNA, and Ras/ERK signaling pathway expressions were evaluated using quantitative real time polymerase chain reaction (qRT-PCR) and western blot (WB) assays. We also conducted functional investigations by silencing lncRNA NONMMUT063967.2. The sequencing revealed significant changes in lncRNA and mRNA profiles, with the expression of lncRNA NONMMUT063967.2 being significantly promoted in the ASXL3 gene mutations group (MT) while the expression of Fgfr2 being downregulated. The in vitro experiments showed that ASXL3 gene mutations inhibited the proliferation of cardiomyocytes and accelerated cell apoptosis by promoting the expression of lncRNAs (NONMMUT063967.2, NONMMUT063918.2, and NONMMUT063891.2), suppressing the formation of FGFR2 transcripts, and inhibiting the Ras/ERK signaling pathway. The decrease in FGFR2 had the same effect on the Ras/ERK signaling pathway, proliferation, and apoptosis in mouse cardiomyocytes as ASXL3 mutations. Further mechanistic studies revealed that suppression of lncRNA NONMMUT063967.2 and overexpression of FGFR2 reversed the effects of the ASXL3 mutations on the Ras/ERK signaling pathway, proliferation, and apoptosis in mouse cardiomyocytes. Therefore, ASXL3 mutation decreases FGFR2 expression by upregulating lncRNA NONMMUT063967.2, inhibiting cell proliferation and promoting cell apoptosis in mouse cardiomyocytes.

4.
Front Genet ; 14: 1112153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229200

RESUMO

Background: Microcephaly is common in patients with neuropsychiatric problems, and it is usually closely related to genetic causes. However, studies on chromosomal abnormalities and single-gene disorders associated with fetal microcephaly are limited. Objective: We investigated the cytogenetic and monogenic risks of fetal microcephaly and evaluated their pregnancy outcomes. Methods: We performed a clinical evaluation, high-resolution chromosomal microarray analysis (CMA), and trio exome sequencing (ES) on 224 fetuses with prenatal microcephaly and closely followed the pregnancy outcome and prognosis. Results: Among 224 cases of prenatal fetal microcephaly, the diagnosis rate was 3.74% (7/187) for CMA and 19.14% (31/162) for trio-ES. Exome sequencing identified 31 pathogenic or likely pathogenic (P/LP) single nucleotide variants (SNVs) in 25 genes associated with fetal structural abnormalities in 37 microcephaly fetuses; 19 (61.29%) of which occurred de novo. Variants of unknown significance (VUS) was found in 33/162 (20.3%) fetuses. The gene variant involved included the single gene MPCH 2 and MPCH 11, which is associated with human microcephaly, and HDAC8, TUBGCP6, NIPBL, FANCI, PDHA1, UBE3A, CASK, TUBB2A, PEX1, PPFIBP1, KNL1, SLC26A4, SKIV2L, COL1A2, EBP, ANKRD11, MYO18B, OSGEP, ZEB2, TRIO, CLCN5, CASK, and LAGE3. The live birth rate of fetal microcephaly in the syndromic microcephaly group was significantly higher than that in the primary microcephaly group [62.9% (117/186) vs 31.56% (12/38), p = 0.000]. Conclusion: We conducted a prenatal study by conducting CMA and ES for the genetic analysis of fetal microcephaly cases. CMA and ES had a high diagnostic rate for the genetic causes of fetal microcephaly cases. In this study, we also identified 14 novel variants, which expanded the disease spectrum of microcephaly-related genes.

5.
Hum Genet ; 142(6): 835-847, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095353

RESUMO

Fetal hyperechogenic kidneys (HEK) is etiologically a heterogeneous disorder. The aim of this study was to identify the genetic causes of HEK using prenatal chromosomal microarray analysis (CMA) and exome sequencing (ES). From June 2014 to September 2022, we identified 92 HEK fetuses detected by ultrasound. We reviewed and documented other ultrasound anomalies, microscopic and submicroscopic chromosomal abnormalities, and single gene disorders. We also analyzed the diagnostic yield of CMA and ES and the clinical impact the diagnosis had on pregnancy management. In our cohort, CMA detected 27 pathogenic copy number variations (CNVs) in 25 (25/92, 27.2%) fetuses, with the most common CNV being 17q12 microdeletion syndrome. Among the 26 fetuses who underwent further ES testing, we identified 7 pathogenic/likely pathogenic variants and 8 variants of uncertain significance in 9 genes in 12 fetuses. Four novel variants were first reported herein, expanding the mutational spectra for HEK-related genes. Following counseling, 52 families chose to continue the pregnancy, and in 23 of them, postnatal ultrasound showed no detectable renal abnormalities. Of these 23 cases, 15 had isolated HEK on prenatal ultrasound. Taken together, our study showed a high rate of detectable genetic etiologies in cases with fetal HEK at the levels of chromosomal (aneuploidy), sub-chromosomal (microdeletions/microduplications), and single gene (point mutations). Therefore, we speculate that combined CMA and ES testing for fetal HEK is feasible and has good clinical utility. When no genetic abnormalities are identified, the findings can be transient, especially in the isolated HEK group.


Assuntos
Variações do Número de Cópias de DNA , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Sequenciamento do Exoma , Aberrações Cromossômicas , Feto/diagnóstico por imagem , Feto/anormalidades , Análise em Microsséries , Rim/diagnóstico por imagem
7.
Mol Neurobiol ; 60(6): 2986-3003, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36763283

RESUMO

The Dandy-Walker malformation (DWM) is characterized by neuron dysregulation in embryonic development; however, the regulatory mechanisms associated with it are unclear. This study aimed to investigate the role of NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4) in regulating downstream signaling cascades and neuronal proliferation and apoptosis. Ndufa4 overexpression promoted the proliferation of neurons and inhibited their apoptosis in vitro, which underwent reverse regulation by the Ndufa4 short hairpin RNAs. Ndufa4-knockout (KO) mice showed abnormal histological alterations in the brain tissue, in addition to impaired spatial learning capacity and exploratory activity. Ndufa4 depletion altered the microRNA expressional profiles of the cerebellum: Ndufa4 inhibited miR-145a-5p expression both in the cerebellum and neurons. miR-145a-5p inhibited the proliferation of neurons and promoted their apoptosis. Ndufa4 promoted and miR-145a-5p inhibited the expression of human homer protein homolog 1 and cyclin D2 in neurons. Thus, Ndufa4 promotes the proliferation of neurons and inhibits their apoptosis by inhibiting miR-145a-5p, which directly targets and inhibits the untranslated regions of Homer1 and Ccnd2 expression.


Assuntos
MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Ciclina D2/metabolismo , Apoptose/genética , Neurônios/metabolismo , Proliferação de Células/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Arcabouço Homer/metabolismo
8.
Genes (Basel) ; 14(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36672867

RESUMO

PPP2R1A-related neurodevelopmental disorder (NDD) is expressed with autosomal dominant inheritance and is typically caused by a pathogenic de novo PPP2R1A mutation. It is characterized by the predominant features of hypotonia, developmental delay, moderate-to-severe intellectual disability, agenesis of corpus callosum (ACC), ventriculomegaly, and dysmorphic features; however, none of these anomalies have been diagnosed prenatally. We report on the prenatal diagnosis of PPP2R1A-related NDD in two fetuses by whole exome sequencing. Fetus 1 had partial ACC and severe lateral ventriculomegaly; the pathogenic heterozygous c.544C > T (p. Arg182Trp) de novo missense variant in PPP2R1A was detected. Fetus 2 had severe enlargement of the lateral and third ventricles and macrocephaly; they showed a heterozygous likely pathogenic mutation in PPP2R1A gene (c.547C > T, p. Arg183Trp). Both variants were de novo. This was the first study to use trio WES to prenatally analyze fetuses with PPP2R1A variants. Prenatal diagnosis will not only expand the fetal phenotype of this rare genetic condition but also allow for an appropriate counseling of prospective parents regarding pregnancy outcomes.


Assuntos
Hidrocefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Gravidez , Feminino , Humanos , Sequenciamento do Exoma , Estudos Prospectivos , Diagnóstico Pré-Natal , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição , Proteína Fosfatase 2/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-35400338

RESUMO

BACKGROUND: Brain development is an extremely complex and precisely regulated process, with about one-third of genes expressed and precisely regulated during brain development. OBJECTIVE: This study aims to explore the molecular mechanisms involved in brain development. METHODS: We first established the expression profile of long non-coding RNAs (lncRNAs) and mRNAs in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d through high-throughput sequencing. Second, the associated functions, pathways, and networks of the co-differentially expressed lncRNAs and mRNAs were identified via Gene Ontology (GO), pathway analysis, and PPI network. After bioinformatic analysis and screening, 8 differentially expressed lncRNAs and mRNAs with the same genetic origin were verified by RT-qPCR analysis in brain tissues of fetal mice at different developmental stages. RESULTS: The data revealed that there were 972 co-differentially expressed lncRNAs and 992 codifferentially expressed mRNAs in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d. And we discovered 125 differentially expressed lncRNAs and mRNAs, which have the same genetic origin, in brain tissues of fetal mice at 12.5d, 14.5d and 16.5d through sequencing results and bioinformatics analysis. Besides, we proved that 8 lncRNAs, which have had the same genetic origin as differentially expressed mRNAs, were prominently downregulated, while their maternal genes were upregulated during brain development in fetal mice. CONCLUSION: Our results preliminarily illustrated the differentially expressed lncRNAs and mRNAs, both of which were derived from the same parent genes, during brain development in fetal mice, which suggests that alternative splicing of lncRNA exists during brain development. Besides, our study provides a perspective on critical genes for brain development, which might be the underlying therapeutic targets for developmental brain diseases in children.


Assuntos
Perfilação da Expressão Gênica , RNA Longo não Codificante , Camundongos , Animais , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Processamento Alternativo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Encéfalo/metabolismo
10.
Int J Gynaecol Obstet ; 161(3): 1004-1011, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36495297

RESUMO

OBJECTIVE: To investigate the genetic burden in fetuses with isolated and severe fetal growth restriction (FGR) using Trio whole-exome sequencing (WES) with a normal chromosomal microarray. METHOD: This retrospective study analyzed WES results of singleton fetuses with isolated and severe FGR, whose estimated fetal weight (EFW) was less than the third percentile by Hadlock formula, in a tertiary center between March 2016 and March 2022. Cases with abnormal chromosomal microarray analysis (CMA) and TORCH results were excluded. RESULTS: Fifty-one fetuses with isolated and severe FGR and negative CMA results underwent Trio-WES. Of all patients, eight (15.7%) were diagnosed with FGR at its early onset (<32 weeks) and showed pathogenic or likely pathogenic variants involving Nipped-B-like protein gene (NIPBL) (n = 3), fibroblast growth factor receptor 3 (n = 1), pyruvate dehydrogenase E1 subunit alpha 1 (n = 1), collagen, type I, alpha 1 (n = 1), superkiller viralicidic activity 2-like (n = 1), and chloride voltage-gated channel (CLCN5) (n = 1). De novo-generated variants were identified in five fetuses, of which two were novel, including c.6983C>A (p. Thr2328Lys) in NIPBL and c.934-1G>T in CLCN5. Genetic disorders involved Cornelia de Lange syndrome and metabolic and skeletal genetic diseases. CONCLUSION: The present study indicates that Trio-WES can improve effectivity of prenatal diagnoses for isolated and severe FGR in cases with normal CMA results, aiding prenatal genetic counseling and pregnancy management for FGR fetuses.


Assuntos
Retardo do Crescimento Fetal , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/diagnóstico , Estudos Retrospectivos , Análise em Microsséries , Feto , Ultrassonografia Pré-Natal , Proteínas de Ciclo Celular
11.
Hum Genet ; 142(3): 407-418, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36566310

RESUMO

OBJECTIVE: This retrospective study aimed to investigate the value of whole exome sequencing (WES) for clubfoot (CF) fetuses with or without other structural abnormalities and to further explore the genetic causes of fetal CF. METHODS: this study included 83 singleton pregnancies diagnosed with fetal CF referred to our center between January 2016 and March 2022; cases were divided into two groups: isolated CF and non-isolated CF. After excluding cases with positive karyotyping and chromosomal microarray analysis results, WES was performed for the eligible fetuses and parents. Monogenic variants detected by WES and perinatal outcomes were recorded and evaluated at postnatal follow-up. RESULTS: overall, clinically significant variations were identified in 12.0% (10/83) of fetuses, and the detection rate was significantly higher in the non-isolated than in the isolated CF group (8/36, 22.2% vs. 2/47, 4.3%, p = 0.031). We additionally detected eight (9.6%) fetuses harboring variants of unknown significance. We identified 11 clinically significant variations correlating with clinical phenotypes in nine genes from ten fetuses, with KLHL40 being the most frequent (n = 2). Furthermore, we observed a significant difference in termination and survival rates between isolated and non-isolated CF cases (27.6 vs. 77.8% and 59.6 vs. 19.4%, p < 0.001 for both). CONCLUSION: our data indicate that WES has a high additional diagnostic yield for the molecular diagnosis of fetal CF, markedly enhancing existing prenatal diagnostic capabilities and expanding our understanding of intrauterine genetic disorders, thus assisting us to better interpret fetal phenotype in the future.


Assuntos
Pé Torto Equinovaro , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Sequenciamento do Exoma , Feto , Cariotipagem , Diagnóstico Pré-Natal/métodos , Proteínas Musculares
12.
Genes (Basel) ; 13(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36553582

RESUMO

(1) Objective: To investigate the prenatal diagnosis and genetic counseling for 16p11.2 microdeletion syndrome and to evaluate its pregnancy outcome. (2) Methods: This study included 4968 pregnant women who selected invasive prenatal diagnoses from 1 January 2017 to 1 August 2022. These 4698 pregnancies underwent chromosomal microarray analysis (CMA), data on 81 fetuses diagnosed with 16p11.2 microdeletion syndrome based on prenatal ultrasound features and genetic test results were recorded, and their pregnancy outcome was evaluated. (3) Results: 1.63% of fetuses (81/4968) were diagnosed with 16p11.2 microdeletion syndrome. Among these, there were skeletal malformations in 48.15% of the 81 fetuses, cardiovascular malformations in 30.86%, central nervous system malformations (CNS) in 11.11%, digestive system structural abnormalities in 6.17%, and isolated ultrasonography markers in 3.70%. (4) Conclusions: 16p11.2 microdeletion syndrome can display various systemic ultrasound abnormalities in the perinatal period but vertebral malformations are the most common. Our study is the first to report that TBX1 and CJA5 are associated with 16p11.2 microdeletion syndrome, expanding the disease spectrum of 16p11.2 microdeletion syndrome. In our study, the ventricular septal defect is the main feature of cardiac structural abnormalities caused by 16p11.2 microdeletion syndrome. In addition, our study highlights the use of CMA in 16p11.2 microdeletion syndrome, analyzed their genetic results, and evaluated the follow-up prognosis, which can be useful for prenatal diagnosis and genetic counseling.


Assuntos
Transtornos Cromossômicos , Cardiopatias Congênitas , Comunicação Interventricular , Gravidez , Feminino , Humanos , Diagnóstico Pré-Natal/métodos , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cardiopatias Congênitas/genética , Comunicação Interventricular/genética , Estruturas Cromossômicas , Síndrome
13.
Genome Med ; 14(1): 123, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307859

RESUMO

BACKGROUND: Exome sequencing (ES) is becoming more widely available in prenatal diagnosis. However, data on its clinical utility and integration into clinical management remain limited in practice. Herein, we report our experience implementing prenatal ES (pES) in a large cohort of fetuses with anomalies detected by ultrasonography using a hospital-based in-house multidisciplinary team (MDT) facilitated by a three-step genotype-driven followed by phenotype-driven analysis framework. METHODS: We performed pES in 1618 fetal cases with positive ultrasound findings but negative for karyotyping and chromosome microarray analysis between January 2014 and October 2021, including both retrospective (n=565) and prospective (n=1053) cohorts. The diagnostic efficiency and its correlation to organ systems involved, phenotypic spectrum, and the clinical impacts of pES results on pregnancy outcomes were analyzed. RESULTS: A genotype-driven followed by phenotype-driven three-step approach was carried out in all trio pES. Step 1, a genotype-driven analysis resulted in a diagnostic rate of 11.6% (187/1618). Step 2, a phenotype-driven comprehensive analysis yielded additional diagnostic findings for another 28 cases (1.7%; 28/1618). In the final step 3, data reanalyses based on new phenotypes and/or clinical requests found molecular diagnosis in 14 additional cases (0.9%; 14/1618). Altogether, 229 fetal cases (14.2%) received a molecular diagnosis, with a higher positive rate in the retrospective than the prospective cohort (17.3% vs. 12.4%, p<0.01). The diagnostic rates were highest in fetuses with skeletal anomalies (30.4%) and multiple organ involvements (25.9%), and lowest in fetuses with chest anomalies (0%). In addition, incidental and secondary findings with childhood-onset disorders were detected in 11 (0.7%) cases. Furthermore, we described the prenatal phenotypes for the first time for 27 gene-associated conditions (20.0%, 27/135) upon a systematic analysis of the diagnosed cases and expanded the phenotype spectrum for 26 (19.3%) genes where limited fetal phenotypic information was available. In the prospective cohort, the combined prenatal ultrasound and pES results had significantly impacted the clinical decisions (61.5%, 648/1053). CONCLUSIONS: The genotype-driven approach could identify about 81.7% positive cases (11.6% of the total cohort) with the initial limited fetal phenotype information considered. The following two steps of phenotype-driven analysis and data reanalyses helped us find the causative variants in an additional 2.6% of the entire cohort (18.3% of all positive findings). Our extensive phenotype analysis on a large number of molecularly confirmed prenatal cases had greatly enriched our current knowledge on fetal phenotype-genotype correlation, which may guide more focused prenatal ultrasound in the future. This is by far the largest pES cohort study that combines a robust trio sequence data analysis, systematic phenotype-genotype correlation, and well-established MDT in a single prenatal clinical setting. This work underlines the value of pES as an essential component in prenatal diagnosis in guiding medical management and parental decision making.


Assuntos
Exoma , Ultrassonografia Pré-Natal , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Estudos de Coortes , Estudos Prospectivos , Ultrassonografia Pré-Natal/métodos , Diagnóstico Pré-Natal/métodos , Feto/diagnóstico por imagem
14.
Front Cardiovasc Med ; 9: 988438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158810

RESUMO

Objective: To evaluate the utility of chromosomal microarray analysis (CMA) in fetuses with isolated ventricular septal defect (VSD) and to explore the favorable factors for predicting spontaneous closure of defects. Methods: The study included 436 singleton pregnancies seen at a referral prenatal diagnosis center, between January 2016 and May 2020, of which 168 fetuses with isolated VSD were diagnosed in the prenatal setting. VSD was classified as an isolated VSD whether it had ultrasound soft markers or not. All patients underwent testing employing quantitative fluorescent polymerase chain reaction (QF-PCR) and CMA as the first-line genetic detection strategies, mainly in amniotic fluid and umbilical blood samples. Rates of chromosomal abnormalities were compared by subgroups of isolated VSD (muscular or perimembranous). Binary logistic regression analysis was performed to predict the independent determinants of spontaneous closure by 2 years. Results: Overall, the CMA identified clinically significant copy number variations (CNVs) in 7/168 (4.2%) fetuses and variants of unknown significance (VOUS) in 15/168 (8.9%). Muscular and perimembranous VSDs were found in 53.6 and 46.4%, respectively. Clinically significant relevant subchromosomal aberrations were revealed in seven (9.0%) perimembranous VSDs compared with none in 90 muscular defects (P < 0.01). The median initial size of the defect in the muscular VSDs was 2.2(1.8-2.7) mm, as compared to that of 2.8 (2.2-3.2) mm in the perimembranous VSDs group (p = 0.000). In muscular vs. perimembranous VSDs, spontaneous closure occurred more frequently and earlier [40.0 vs. 15.4% in utero (p = 0.000), 61.1 vs. 30.8% at 1-year (p = 0.000), and 75.6 vs. 42.3% at 2-year (P = 0.000)]. Postnatal surgical closure was warranted in 4/90 (4.4%) of the infants with muscular VSDs, as compared to 29/71 (40.8%) with perimembranous defects (p = 0.000). Furthermore, isolated muscular type VSD, smaller defect size, and maternal age of less than 35 years are all positive predictors of spontaneous closure of the defects. Conclusion: This study highlighted the value of microarray for unbalanced subchromosomal abnormalities in fetuses with isolated VSD, particularly in the perimembranous defects. The detection of an isolated muscular VSD prenatally may be considered a benign or likely benign finding; in contrast, for perimembranous VSD, a prenatal CMA should be offered.

15.
Genes (Basel) ; 13(9)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36140791

RESUMO

Background: There are few studies on the burden of chromosomal abnormalities and single gene disorders in fetal hemivertebra (HV). We aim to investigate the cytogenetic and monogenic risk and evaluate prenatal outcomes of fetal HV. Method: This study included fetuses diagnosed with HV divided into two groups: isolated HV and non-isolated HV. Data on other sonographic structural anomalies, chromosomal and sub-chromosomal abnormalities, monogenic variations detected by WES, and prenatal outcomes are recorded and reviewed. Results: Among 109 fetal HV cases, forty-seven (43.1%) non-isolated HV cases were associated with structural anomalies. Chromosomal test results were available in 58 cases, identifying six (10.3%) chromosomal aberrations involved in four isolated and two non-isolated HV. WES identified four (likely) pathogenic variants in three cases among 16 fetuses with HV, involving three novel variants, 1250G > T and c.1277G> inherited from parents, respectively, in DLL3 and c.7213C > A ** in the FLNB. The live birth rate (LB) was higher in the isolated fetal HV group than in the non-isolated group (67.7% (42/62) vs. 12.5% (12/47), p < 0.001). Conclusion: This study emphasizes the risk of cytogenetic abnormalities in isolated HV. WES yields a diagnostic rate of 18.3% in HV with normal CMA, probably aiding the prenatal counseling and management of fetal HV.


Assuntos
Feto , Diagnóstico Pré-Natal , Aberrações Cromossômicas , Feminino , Feto/anormalidades , Feto/diagnóstico por imagem , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Gravidez , Diagnóstico Pré-Natal/métodos
16.
Mol Cytogenet ; 15(1): 27, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765027

RESUMO

BACKGROUND: There are a few literature reports of prenatal ultrasound manifestations of Williams-Beuren syndrome. We aimed to explore the prenatal diagnosis of Williams-Beuren syndrome by ultrasound and chromosomal microarray analysis and describe the prenatal ultrasound performance of this syndrome. METHODS: In this retrospective study, we reported eight cases of Williams-Beuren syndrome diagnosed at our prenatal diagnostic center from 2016 to 2021. We systematically reviewed clinical data from these cases, including indications for invasive testing, sonographic findings, QF-PCR results, chromosomal microarray analysis results, and pregnancy outcomes. RESULTS: In this study, the common ultrasound features were ventricular septal defect (37.5%), intrauterine growth retardation (25%), and aortic coarctation (25%). Moreover, all patients were found to have a common deletion in the Williams-Beuren syndrome chromosome region at the 7q11.23 locus, which contained the elastin gene. Deletion sizes ranged from 1.42 to 2.07 Mb. Seven parents asked for termination of pregnancy, and one patient was lost to follow-up. CONCLUSIONS: This study is the most extensive prenatal study using chromosomal microarray analysis technology for detailed molecular analysis of Williams-Beuren syndrome cases. We reported three cases combined with first-reported ultrasound manifestations. Case 1 was concomitant with multicystic dysplastic kidney and duodenal atresia combined with case 3. Notably, case 4 was combined with multiple cardiovascular malformations: Tetralogy of Fallot, right aortic arch, and supravalvar aortic stenosis. These manifestations expand the intrauterine ultrasound phenotype of Williams-Beuren syndrome in previous literature reports.

17.
Bioengineered ; 13(4): 9948-9961, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35435106

RESUMO

Congenital heart disease (CHD) is the most common birth defect. Although ASXL transcriptional regulator 3 (ASXL3) has been reported to cause hereditary CHD, ASXL3-mediated mechanisms in heart development remain unclear. In this study, we used dimethyl sulfoxide (DMSO) to induce differentiation in P19 cells, observed cell morphology using light microscopy after ASXL3 knockdown, and determined the levels of associated myocardial cell markers using reverse transcription-quantitative polymerase chain reaction and western blotting. Subsequently, we used microRNA sequencing, messenger RNA (mRNA) sequencing, and bioinformatics to initially identify the possible mechanisms through which ASXL3-related microRNAs and mRNAs affect heart development. The results indicated that DMSO induced P19 cell differentiation, which could be inhibited by ASXL3 knockdown. We screened 1214 and 1652 differentially expressed microRNAs and mRNAs, respectively, through ASXL3 knockdown and sequencing; these differentially expressed miRNAs were largely enriched in PI3K-Akt, mitogen-activated protein kinase, and Rap1 signaling pathways. Additionally, 11 miRNAs associated with heart development were selected through a literature review. Our analysis indicated the involvement of mmu-miR-323-3p in P19 cell differentiation through the PI3K-Akt pathway. In conclusion, ASXL3 may be involved in the regulation of heart development. This comprehensive study of differentially expressed microRNAs and mRNAs through ASXL3 knockdown in P19 cells provides new insights that may aid the prevention and treatment of CHD.


Assuntos
MicroRNAs , Dimetil Sulfóxido , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Prenat Diagn ; 42(6): 744-752, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35088901

RESUMO

OBJECTIVE: We aimed to investigate the value of exome sequencing (ES) in fetuses with callosal anomalies (CA) with or without other structural anomalies, but with normal findings by karyotyping and chromosome microarray analysis (CMA). METHODS: Cases with CA with or without other structural anomalies were screened for eligibility. Fetuses with abnormal karyotyping or CMA results were excluded. We performed ES on DNA samples from eligible fetus-parental trios and identified diagnostic genetic variants based on the ultrasonographic features. RESULTS: A total of 50 eligible fetus-parental trios were successfully analyzed by ES. We found 17 likely pathogenic or pathogenic variants in 14 genes from 17 fetuses, with a total proportion of diagnostic genetic variants equal to 34.0% (17/50). Of the 17 cases with a diagnosis, 10 (29.4%, 10/35) were isolated and 7 (43.8%, 7/15) were non-isolated. Pregnancy outcome data showed that 70.0% (7/10) of the surviving isolated CA fetuses with negative ES results had a good prognosis in early childhood. CONCLUSIONS: Our study used ES prenatally for CA and showed that ES can be used diagnostically to define the molecular defects that underlie unexplained CA. Most subjects with isolated CA with negative results for genetic causes will have a favorable prognosis in early childhood.


Assuntos
Exoma , Diagnóstico Pré-Natal , Pré-Escolar , Aberrações Cromossômicas , Feminino , Feto/anormalidades , Feto/diagnóstico por imagem , Humanos , Cariotipagem , Análise em Microsséries , Gravidez , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal , Sequenciamento do Exoma/métodos
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(9): 900-906, 2021 Sep 10.
Artigo em Chinês | MEDLINE | ID: mdl-34487541

RESUMO

OBJECTIVE: To investigate the application value of whole exome sequencing technology in fetuses with congenital structural abnormalities. METHODS: The chromosomal abnormalities of 1147 families were analyzed. According to the follow-up results, the data of fetuses with new phenotypes in late pregnancy or after birth were reanalyzed. Subgroups were divided according to the organs involved and whether single malformation or not. The gene regulatory network map was drawn by using string database and Cytoscape software. Fisher exact probability method was used to compare the difference of the diagnostic rate of pathogenic genes among the groups. RESULTS: A total of 160 fetal cases received positive molecular diagnosed, involving 178 variant sites of 125 pathogenic genes, including 8 cases (4.9%, 8/163) by data reanalysis, and the overall positive diagnosis rate was 13.9%. Diagnostic rate was highest in the group of skeletal malformation (31.5%, 39/124) and lowest in that with thoracic malformation (0, 0/32). The gene clusters of fetal edema and intrauterine growth restriction were independent, and were not associated with the major structural malformations. The probability of each parent carrying the same recessive gene variant was 0.03 (39/1146) and 0.08 (4/53) with positive family history. CONCLUSION: For fetuses with congenital structural abnormalities that are negative for conventional genetic tests, 13.9% of phenotypic associated pathogenic/likely pathogenic genetic variants can be detected by whole exome sequencing technology. Its application value for prenatal diagnosis varies in fetus with different organs involved. Reanalysis of sequencing data for cases with new phenotypes in late pregnancy or after birth can further improve the molecular diagnosis rate. Further investigations are needed to explore the related genetic mechanisms.


Assuntos
Doenças Fetais , Feto , Feminino , Feto/diagnóstico por imagem , Humanos , Gravidez , Diagnóstico Pré-Natal , Tecnologia , Ultrassonografia Pré-Natal , Sequenciamento do Exoma
20.
Prenat Diagn ; 41(3): 316-322, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33000500

RESUMO

OBJECTIVE: To explore the copy number variants (CNVs) in case of fetal duodenal obstruction (DO) and assess the associated prenatal findings and postnatal outcomes. MATERIALS AND METHODS: This retrospective study reviewed 51 fetuses with DO and the findings of chromosomal microarray analysis (CMA) used as a first-tier test in our institution between January 2014 and May 2019. RESULTS: The frequency of pathogenic aberrations in fetuses with DO was 15.7% (8/51), including 9.8% (5/51) pathogenic CNVs. Three fetuses with isolated DO each had a deletion on chromosome 13q, one fetus had duplication at 1q43q44, and one had microduplication at 17q12. No significant differences in pathogenic CNVs were observed between isolated DO and DO plus additional anomalies (4/42, 9.5% vs 1/9, 11.1%, P = .89). Of the 51 fetuses with DO, 11 pregnancies were terminated, and eight fetuses had chromosomal abnormalities; one pregnancy ended with intrauterine death, and there were 39 live births. Neonatal outcomes were available for 31 fetuses, and no neonatal deaths occurred after surgery. CONCLUSIONS: Our cohort study demonstrated the value of CMA in fetuses with DO, suggesting that CNVs may underly genetic etiologies that should be considered in the diagnostic evaluation of DO. We think CMA should be recommended in case of DO.


Assuntos
Obstrução Duodenal/diagnóstico , Feto/anormalidades , China , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Feto/diagnóstico por imagem , Feto/fisiopatologia , Humanos , Gravidez , Estudos Retrospectivos , Análise Serial de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA