Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biofactors ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624190

RESUMO

Despite the observation of diabetes-induced brain tissue damage and impaired learning and memory, the underlying mechanism of damage remains elusive, and effective, targeted therapeutics are lacking. Notably, the NLRP3 inflammasome is highly expressed in the hippocampus of diabetic individuals. Nerolidol, a naturally occurring compound with anti-inflammatory and antioxidant properties, has been identified as a potential therapeutic option for metabolic disorders. However, the ameliorative capacity of nerolidol on diabetic hippocampal injury and its underlying mechanism remain unclear. Network pharmacology and molecular docking was used to predict the signaling pathways and therapeutic targets of nerolidol for the treatment of diabetes. Then established a diabetic rat model using streptozotocin (STZ) combined with a high-fat diet and nerolidol was administered. Morris water maze to assess spatial learning memory capacity. Hematoxylin and eosin and Nissl staining was used to detect neuronal damage in the diabetic hippocampus. Transmission electron microscopy was used to detect the extent of damage to mitochondria, endoplasmic reticulum (ER) and synapses. Immunofluorescence was used to detect GFAP, IBA1, and NLRP3 expression in the hippocampus. Western blot was used to detect apoptosis (Bcl-2, BAX, and Cleaved-Caspase-3); synapses (postsynaptic densifying protein 95, SYN1, and Synaptophysin); mitochondria (DRP1, OPA1, MFN1, and MFN2); ER (GRP78, ATF6, CHOP, and caspase-12); NLRP3 inflammasome (NLRP3, ASC, and caspase-1); inflammatory cytokines (IL-18, IL-1ß, and TNF-α); AKT (P-AKT); and mitogen-activated protein kinase (MAPK) pathway (P-ERK, P-p38, and P-JNK) related protein expression. Network pharmacology showed that nerolidol's possible mechanisms for treating diabetes are the MAPK/AKT pathway and anti-inflammatory effects. Animal experiments demonstrated that nerolidol could improve blood glucose, blood lipids, and hippocampal neuronal damage in diabetic rats. Furthermore, nerolidol could improve synaptic, mitochondrial, and ER damage in the hippocampal ultrastructure of diabetic rats by potentially affecting synaptic, mitochondrial, and ER-related proteins. Further studies revealed that nerolidol decreased neuroinflammation, NLRP3 and inflammatory factor expression in hippocampal tissue while also decreasing MAPK pathway expression and enhancing AKT pathway expression. However, nerolidol improves hippocampal damage in diabetic rats cannot be shown to improve cognitive function. In conclusion, our study reveals for the first time that nerolidol can ameliorate hippocampal damage, neuroinflammation, synaptic, ER, and mitochondrial damage in diabetic rats. Furthermore, we suggest that nerolidol may inhibit NLRP3 inflammasome and affected the expression of MAPK and AKT. These findings provide a new experimental basis for the use of nerolidol to ameliorate diabetes-induced brain tissue damage and the associated disease.

2.
Biomed Pharmacother ; 174: 116582, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642504

RESUMO

The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.


Assuntos
Catequina/análogos & derivados , Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Chá , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Masculino , Chá/química , Camundongos , Ácidos Graxos Voláteis/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Dislipidemias/tratamento farmacológico , Dislipidemias/prevenção & controle , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/tratamento farmacológico
3.
Heliyon ; 10(5): e26923, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455533

RESUMO

Background: Feeding on a high-fat diet (HFD) results in obesity and chronic inflammation, which may have long-term effects on neuroinflammation and hippocampal injury. Theabrownin, a biologically active compound derived from the microbial fermentation of Qingzhuan dark tea, exhibits anti-inflammatory properties and lipid-lowering effects. Nevertheless, its potential in neuroprotection has yet to be investigated. Consequently, this study aims to investigate the neuroprotective effects of Theabrownin extracted from Qingzhuan dark tea, as well as its potential therapeutic mechanisms. Methods: Male C57 mice were subjected to an 8-week HFD to induce obesity, followed by oral administration of Theabrownin from Qingzhuan dark tea. Lipid levels were detected by Elisa kit, hippocampal morphological damage was evaluated by HE and Nissl staining, and the expression levels of GFAP, IBA1, NLRP3, MARK4, and BAX in the hippocampus were detected by immunofluorescence (IF), and protein expression levels of NLRP3, MARK4, PSD95, SYN1, SYP, and Bcl-2 were detected by Western Blot (WB). Results: Theabrownin treatment from Qingzhuan dark tea prevents alterations in body weight and lipid levels in HFD-fed mice. Furthermore, Theabrownin decreased hippocampal morphological damage and reduced the activation of astrocytes and microglia in HFD-fed mice. Moreover, Theabrownin decreased the expression of MARK4 and NLRP3 in HFD-fed mice. Besides, Theabrownin elevated the expression of PSD95, SYN1, and SYP in HFD-fed obese mice. Finally, Theabrownin prevented neuronal apoptosis, reduced the expression of BAX, and increased the expression of Bcl-2 in HFD-fed obese mice. Conclusions: In summary, our current study presents the first demonstration of the effective protective effect of Theabrownin from Qingzhuan dark tea against HFD-induced hippocampal damage in obese mice. This protection may result from the regulation of the MARK4/NLRP3 signaling pathway, subsequently inhibiting neuroinflammation, synaptic plasticity, and neuronal apoptosis.

4.
Cancer Gene Ther ; 31(4): 497-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302729

RESUMO

Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
5.
Hereditas ; 161(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167125

RESUMO

BACKGROUND: Suanzaoren Decoction (SZRD), a well-known formula from traditional Chinese medicine, has been shown to have reasonable cognitive effects while relaxing and alleviating insomnia. Several studies have demonstrated significant therapeutic effects of SZRD on diabetes and Alzheimer's disease (AD). However, the active ingredients and probable processes of SZRD in treating Alzheimer's with diabetes are unknown. This study aims to preliminarily elucidate the potential mechanisms and potential active ingredients of SZRD in the treatment of Alzheimer's with diabetes. METHODS: The main components and corresponding protein targets of SZRD were searched on the TCMSP database. Differential gene expression analysis for diabetes and Alzheimer's disease was conducted using the Gene Expression Omnibus database, with supplementation from OMIM and genecards databases for differentially expressed genes. The drug-compound-target-disease network was constructed using Cytoscape 3.8.0. Disease and SZRD targets were imported into the STRING database to construct a protein-protein interaction network. Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the intersection of genes. Molecular docking and molecular dynamics simulations were conducted on the Hub gene and active compounds. Gene Set Enrichment Analysis was performed to further analyze key genes. RESULTS: Through the Gene Expression Omnibus database, we obtained 1977 diabetes related genes and 622 AD related genes. Among drugs, diabetes and AD, 97 genes were identified. The drug-compound-target-disease network revealed that quercetin, kaempferol, licochalcone a, isorhamnetin, formononetin, and naringenin may be the core components exerting effects. PPI network analysis identified hub genes such as IL6, TNF, IL1B, CXCL8, IL10, CCL2, ICAM1, STAT3, and IL4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that SZRD in the treatment of Alzheimer's with diabetes is mainly involved in biological processes such as response to drug, aging, response to xenobiotic, and enzyme binding; as well as signaling pathways such as Pathways in cancer, Chemical carcinogenesis - receptor activation, and Fluid shear stress and atherosclerosis. Molecular docking results showed that licochalcone a, isorhamnetin, kaempferol, quercetin, and formononetin have high affinity with CXCL8, IL1B, and CCL2. Molecular dynamics simulations also confirmed a strong interaction between CXCL8 and licochalcone a, isorhamnetin, and kaempferol. Gene Set Enrichment Analysis revealed that CXCL8, IL1B, and CCL2 have significant potential in diabetes. CONCLUSION: This study provides, for the first time, insights into the active ingredients and potential molecular mechanisms of SZRD in the treatment of Alzheimer's with diabetes, laying a theoretical foundation for future basic research.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Humanos , Farmacologia em Rede , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Quempferóis , Simulação de Acoplamento Molecular , Quercetina , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética
6.
Toxicology ; 486: 153432, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696940

RESUMO

Neuroinflammation is one of the important mechanisms of trimethyltin chloride (TMT) central neurotoxicity. Artemisinin (ARS) is a well-known antimalarial drug that also has significant anti-inflammatory effects. Prokineticin 2 (PK2) is a small molecule secreted protein that is widely expressed in the nervous system and plays a key role in the development of neuroinflammation. However, it remains unclear whether ARS can ameliorate neuroinflammation caused by TMT and whether PK2/PKRs signaling pathway plays a part in it. In this research, male Balb/c mice were administered TMT (2.8 mg/kg, i.p.) followed by immunohistochemistry to assess the expression of PK2, PKR1, and PKR2 proteins in the hippocampus. Network pharmacology was used to predict the intersection targets of ARS, central nervous system(CNS) injury and TMT. The neurobehavior of mice was evaluated by behavioral scores. Histopathological damage of the hippocampus was evaluated by HE, Nissl and Electron microscopy. Western blotting was used to identify the expression of synapse-related proteins (PSD95, SYN1, Synaptophysin), PK system-related proteins (PK2, PKR1, PKR2), and inflammation-related proteins (TNF-α, NF-κB p65). Immunohistochemistry showed that TMT resulted in elevated PK2 and PKR2 protein expression in the CA2 and CA3 regions of the hippocampus in mice, while PKR1 protein was not significantly altered. Network pharmacology showed that PK2 could interact with the intersectional targets of ARS, CNS injury, and TMT. ARS remarkably attenuated TMT-induced seizures and hippocampal histological damage. Further studies demonstrated that ARS treatment attenuated TMT-induced hippocampal ultrastructural damage, possibly by increasing the number of rough endoplasmic reticulum and mitochondria as well as upregulating the levels of synapse-associated proteins (PSD95, SYN1, Synaptophysin). Western blotting results revealed that ARS downregulated TMT-induced TNF-α and NF-κB p65 protein levels. In addition, ARS also decreased TMT-induced protein expression of PK2 and PKR2 in the mouse hippocampus, but had no significant effect on PKR1 protein expression. Our results suggested that ARS ameliorated TMT-induced abnormal neural behavior and hippocampal injury, which may be achieved by regulating PK2/PKRs inflammatory pathway and ameliorating synaptic injury. Therefore, we suggest that PK2/PKRs pathway may be involved in TMT neurotoxicity and ARS may be a promising drug that can relieve TMT neurotoxicity.


Assuntos
Artemisininas , Neuropeptídeos , Compostos de Trimetilestanho , Camundongos , Animais , Masculino , Sinaptofisina , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Hipocampo , Compostos de Trimetilestanho/toxicidade , Artemisininas/farmacologia , Artemisininas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA