Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443196

RESUMO

Touch sensation from the glabrous skin of the hand is essential for precisely controlling dexterous movements, yet the neural mechanisms by which tactile inputs influence motor circuits remain largely unexplored. By pairing air-puff tactile stimulation on the hand's glabrous skin with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1), we examined the effects of tactile stimuli from single or multiple fingers on corticospinal excitability and M1's intracortical circuits. Our results showed that when we targeted the hand's first dorsal interosseous (FDI) muscle with TMS, homotopic (index finger) tactile stimulation, regardless of its point (fingertip or base), reduced corticospinal excitability. Conversely, heterotopic (ring finger) tactile stimulation had no such effect. Notably, stimulating all five fingers simultaneously led to a more pronounced decrease in corticospinal excitability than stimulating individual fingers. Furthermore, tactile stimulation significantly increased intracortical facilitation (ICF) and decreased long-interval intracortical inhibition (LICI) but did not affect short-interval intracortical inhibition (SICI). Considering the significant role of the primary somatosensory cortex (S1) in tactile processing, we also examined the effects of downregulating S1 excitability via continuous theta burst stimulation (cTBS) on tactile-motor interactions. Following cTBS, the inhibitory influence of tactile inputs on corticospinal excitability was diminished. Our findings highlight the spatial specificity of tactile inputs in influencing corticospinal excitability. Moreover, we suggest that tactile inputs distinctly modulate M1's excitatory and inhibitory pathways, with S1 being crucial in facilitating tactile-motor integration.


Assuntos
Córtex Motor , Tato , Humanos , Mãos , Inibição Psicológica , Movimento
2.
J Physiol ; 602(5): 933-948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358314

RESUMO

Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant's individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38185987

RESUMO

Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.


Assuntos
Consolidação da Memória , Córtex Motor , Consolidação da Memória/fisiologia , Vigília , Aprendizagem/fisiologia , Memória de Longo Prazo , Destreza Motora/fisiologia , Córtex Motor/fisiologia
4.
J Neurophysiol ; 131(2): 187-197, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117916

RESUMO

Spinal cord injury (SCI) disrupts neuronal function below the lesion epicenter, causing disuse muscle atrophy. We investigated motor unit (MU) activity and synaptic inputs to motoneurons in the caudal region of the injured spinal cord. Participants with C4-C7 cervical injuries were studied. The extensor digitorum communis (EDC) muscle, which is mainly innervated by C8, was assessed for disuse muscle atrophy. Using advanced electromyography and signal-processing techniques, we examined the concurrent activation of a substantial population of MUs during force-tracking tasks. We found that in participants with SCI (n = 9), both MU discharge rates and the amplitudes of MU action potentials were significantly lower than in controls (n = 9). After SCI, MUs were recruited in a limited force range as the strength of muscle contractions increased, implying a disruption in the orderly MU recruitment pattern. Coherence analysis revealed reduced synaptic inputs to motoneurons in the delta band (0.5-5 Hz) for participants with SCI, suggesting diminished common synaptic inputs to the EDC muscle. In addition, participants with SCI exhibited greater muscle force variability. Using principal component analysis on low-frequency MU discharge rates, we found that the first common component (FCC) captured the most discharge variability in participants with SCI. The coefficients of variation (CV) of the FCC correlated with force signal CVs, suggesting force variability mainly results from common synaptic inputs to the EDC muscle after SCI. These results advance our understanding of the neurophysiology of disuse muscle atrophy in human SCI, paving the way for therapeutic interventions to restore muscle function.NEW & NOTEWORTHY This study analyzed motor unit (MU) function below the lesion epicenter in patients with spinal cord injury (SCI). We found reduced MU discharge rates and action potential amplitudes in participants with SCI compared with controls. The strength of common synaptic inputs to motoneurons was reduced in patients with SCI, with increased force variability primarily due to low-frequency oscillations of common inputs. This study enhances understanding of neurophysiological and behavioral changes in disuse muscle atrophy post-SCI.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Estimulação Elétrica , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Eletromiografia/métodos , Contração Muscular/fisiologia , Atrofia Muscular/patologia
5.
Spinal Cord ; 62(2): 65-70, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158410

RESUMO

STUDY DESIGN: Cross-sectional study. OBJECTIVES: To evaluate unsupported sitting posture impairments and identify postural regulatory strategies in cervical spinal cord injury (cSCI) participants via a head-mounted IMU sensor. SETTING: A research lab in the United States of America. METHODS: cSCI participants and controls maintained postural stability during unsupported sitting with eyes either open or closed. The head-mounted IMU sensor recorded accelerometer data to calculate cumulative sway motion. The postural regulatory strategy was analyzed by assessing the normalized power spectral density (PSD) in four frequency bands: 0-0.1 Hz (visual regulation), 0.1-0.5 Hz (vestibular regulation), 0.5-1 Hz (cerebellar regulation), and >1 Hz (proprioception and muscle control). RESULTS: Significant increases in postural sway were observed in cSCI participants compared to controls during unsupported sitting. For cSCI participants, normalized PSD significantly increased in the low-frequency bands (0-0.1 Hz and 0.1-0.5 Hz) but decreased in the high-frequency band (>1 Hz) compared to controls. CONCLUSIONS: cSCI participants were more reliant on visual and vestibular systems for sitting balance, while depending less on proprioception and muscle control compared to controls. These findings suggest that the altered postural regulatory strategy is ineffective in maintaining postural stability during unsupported sitting, emphasizing the importance of proprioception and muscle control for seated postural stability in cSCI participants.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Humanos , Estudos Transversais , Postura Sentada , Traumatismos da Medula Espinal/diagnóstico , Postura/fisiologia , Equilíbrio Postural/fisiologia
6.
Sci Rep ; 13(1): 20968, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017091

RESUMO

The primary motor cortex (M1) is broadly acknowledged for its crucial role in executing voluntary movements. Yet, its contributions to cognitive and sensory functions remain largely unexplored. Transcranial direct current stimulation (tDCS) is a noninvasive neurostimulation method that can modify brain activity, thereby enabling the establishment of a causal link between M1 activity and behavior. This study aimed to investigate the online effects of tDCS over M1 on cognitive-motor and sensory-motor functions. Sixty-four healthy participants underwent either anodal or sham tDCS while concurrently performing a set of standardized robotic tasks. These tasks provided sensitive and objective assessments of brain functions, including action selection, inhibitory control, cognitive control of visuomotor skills, proprioceptive sense, and bimanual coordination. Our results revealed that anodal tDCS applied to M1 enhances decision-making capacity in selecting appropriate motor actions and avoiding distractors compared to sham stimulation, suggesting improved action selection and inhibitory control capabilities. Furthermore, anodal tDCS reduces the movement time required to accomplish bimanual movements, suggesting enhanced bimanual performance. However, we found no impact of anodal tDCS on cognitive control of visuomotor skills and proprioceptive sense. This study suggests that augmenting M1 activity via anodal tDCS influences cognitive-motor and sensory-motor functions in a task-dependent manner.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Propriocepção , Cognição
7.
J Neurophysiol ; 129(5): 1225-1227, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141050

RESUMO

Memory interference can arise when multiple motor skill tasks are learned. A study by Nepotiuk and Brown (Nepotiuk AH, Brown LE. J Neurophysiol 128: 969-981, 2022) demonstrated that the susceptibility of motor memory to interference differs depending on expertise, using a vegetable-chopping task. The authors suggest that the motor memories of expert chefs and competent home cooks are organized differently. This Neuro Forum article offers an alternative explanation for their results and provides insights into motor memory processing in both experts and competents.


Assuntos
Aprendizagem , Memória , Humanos , Destreza Motora
8.
J Neurophysiol ; 128(6): 1534-1545, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321731

RESUMO

Motor skill learning is considered to arise out of contributions from multiple learning mechanisms, including error-based learning (EBL), use-dependent learning (UDL), and reinforcement learning (RL). These learning mechanisms exhibit dissociable roles and engage different neural circuits during skill acquisition. However, it remains largely unknown how a newly formed motor memory acquired through each learning mechanism decays over time and whether distinct learning mechanisms produce different generalization patterns. Here, we used variants of reaching paradigms that dissociated these learning mechanisms to examine the time course of memory decay following each learning and the generalization patterns of each learning. We found that motor memories acquired through these learning mechanisms decayed as a function of time. Notably, 15 min, 6 h, and 24 h after acquisition, the memory of EBL decayed much greater than that of RL. The memory acquired through UDL faded away within a few minutes. Motor memories formed through EBL and RL for given movement directions generalized to untrained movement directions, with the generalization of EBL being greater than that of RL. In contrast, motor memory of UDL could not generalize to untrained movement directions. These results suggest that distinct learning mechanisms exhibit different patterns of memory decay and generalization.NEW & NOTEWORTHY Motor skill learning is likely to involve error-based learning, use-dependent plasticity, and operant reinforcement. Here, we showed that these dissociable learning mechanisms exhibited distinct patterns of memory decay and generalization. With a better understanding of the characteristics of these learning mechanisms, it becomes possible to regulate each learning process separately to improve neurological rehabilitation.


Assuntos
Generalização Psicológica , Aprendizagem , Generalização Psicológica/fisiologia , Aprendizagem/fisiologia , Destreza Motora , Movimento/fisiologia , Reforço Psicológico
9.
Hum Mov Sci ; 86: 103017, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272203

RESUMO

Use-dependent learning has been investigated to some extent, although how motor patterns obtained through use-dependent learning are generalized across different movement conditions remains to be further understood. Here, we investigate the generalizability of use-dependent learning by determining how visuomotor adaptation associated with use-dependent learning was generalized across different workspaces and limb postures. In our experiments, participants first adapted to a visuomotor rotation while reaching from a given starting position toward a training target in a given limb posture. They concurrently experienced repetitive passive movements from varying starting positions (Exp. 1) or in varying limb postures (Exp. 2). Following that, they adapted to the same rotation while reaching from the original start circle to a transfer target. Regardless of the workspaces or limb postures experienced, passive training facilitated visuomotor adaptation in the transfer session, indicating that visuomotor adaptation can generalize across different movement conditions. However, the extent of generalization decreased as the experienced workspaces or limb postures deviated from the original condition experienced. Our findings indicate that use-dependent learning results in motor instances that are workspace and limb-posture specific, although they are still useful for enhancing the generalization of motor learning across varying conditions.


Assuntos
Transtornos dos Movimentos , Desempenho Psicomotor , Humanos , Movimento , Generalização Psicológica , Adaptação Fisiológica , Postura , Percepção Visual
10.
Pest Manag Sci ; 78(11): 4679-4688, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35866266

RESUMO

BACKGROUND: Anastatus japonicus Ashmead (Hymenoptera: Eupelmidae) is a solitary egg endoparasitoid that has been studied for inundative biological control of Halyomorpha halys Stål (Hemiptera: Pentatomidae) in China. In this study, we assessed the reproductive attributes and functional response of Anastatus japonicus on a factitious host, Antheraea pernyi (Guérin-Méneville) (Lepidoptera: Anthelidae) at 25 ± 1 °C, 70 ± 5% relative humidity and 16 h:8 h light/dark photoperiod. RESULTS: The mean lifetime fecundity of Anastatus japonicus females was 404.3 progeny produced over an average oviposition period of 42.3 days. The sex ratio of adult progeny was slightly male biased (51.2%), whereas more female progeny were produced before day 20 of a female's life. Single 1-day-old mated Anastatus japonicus females exhibited a type II functional response to increasing host densities (1-50 eggs), with an inverse host density-dependent pattern of percent parasitism. The upper limit to the daily attack rate was estimated as 7.6 Antheraea pernyi eggs. Furthermore, mutual interference among Anastatus japonicus females occurred when increasing densities of parasitoids (1, 2, 4, 8, 16) were exposed to 30 host eggs. CONCLUSION: Laboratory functional response result revealed that individual Anastatus japonicus might be unable to respond effectively to increasing host density in the field, which could be compensated by releasing larger numbers of wasps. Strong mutual interference among foraging Anastatus japonicus females should be considered in any future inundative biological control programs for the sustainable management of Halyomorpha halys or other host insect pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Heterópteros , Mariposas , Vespas , Animais , Feminino , Masculino , Oviposição , Reprodução , Vespas/fisiologia
11.
Hum Mov Sci ; 83: 102952, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35468326

RESUMO

INTRODUCTION: Distinct cortical activities contribute to unilateral and bilateral motor control. However, it remains largely unknown whether the behavior of motor neurons differs between unilateral and bilateral isometric force generation. Here, we first investigated motor units (MUs) recruitment patterns during unilateral and bilateral force generation. Considering that the force control is primarily regulated by low-frequency synaptic inputs to motor neurons, we also examined the relation between MU discharge rate and force output during unilateral and bilateral muscle contractions. METHODS: Using advanced electromyography (EMG) sensor arrays and spike-triggered averaging techniques, we examined a large population of MUs in the right first dorsal interosseous (FDI) muscle during unilateral and bilateral force tracking tasks. Using the principal component analysis, we analyzed the first common component (FCC) of MU discharge rate to describe the force fluctuations during unilateral and bilateral contractions. RESULTS: We found that MU discharge rate decreased during bilateral compared with unilateral contractions. MU recruitment threshold increased, while the amplitude and duration of MU action potential (MUAP) remained unchanged during bilateral compared with unilateral contractions. We found that the coefficients of variation (CV) for the force and FCC signal increased during bilateral compared with unilateral contractions. Notably, the FCC signal captured a great amount of MU discharge variability, and its CV correlated with the CV of the force signal. CONCLUSION: Our findings suggest that MU recruitment patterns are altered during bilateral compared with unilateral isometric force generation, likely related to changes at the low-frequency portion of the synaptic drive.


Assuntos
Alta do Paciente , Recrutamento Neurofisiológico , Eletromiografia , Humanos , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia
12.
Sci Rep ; 12(1): 3131, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210478

RESUMO

Learning a motor adaptation task produces intrinsically unstable or transient motor memories. Despite the presence of effector-independent motor memories following the learning of novel environmental dynamics, it remains largely unknown how those memory traces decay in different contexts and whether an "offline" consolidation period protects memories against decay. Here, we exploit inter-effector transfer to address these questions. We found that newly acquired motor memories formed with one effector could be partially retrieved by the untrained effector to enhance its performance when the decay occurred with the passage of time or "washout" trials on which error feedback was provided. The decay of motor memories was slower following "error-free" trials, on which errors were artificially clamped to zero or removed, compared with "washout" trials. However, effector-independent memory components were abolished following movements made in the absence of task errors, resulting in no transfer gains. The brain can stabilize motor memories during daytime wakefulness. We found that 6 h of wakeful resting increased the resistance of effector-independent memories to decay. Collectively, our results suggest that the decay of effector-independent motor memories is context-dependent, and offline processing preserves those memories against decay, leading to improvements of the subsequent inter-effector transfer.


Assuntos
Encéfalo/fisiologia , Memória/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Vigília/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino
13.
Neuroscience ; 485: 1-11, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848261

RESUMO

Afferent inputs to the primary somatosensory cortex (S1) are differentially processed during precision and power grip in humans. However, it remains unclear how S1 interacts with the primary motor cortex (M1) during these two grasping behaviors. To address this question, we measured short-latency afferent inhibition (SAI), reflecting S1-M1 interactions via thalamo-cortical pathways, using paired-pulse transcranial magnetic stimulation (TMS) during precision and power grip. The TMS coil over the hand representation of M1 was oriented in the posterior-anterior (PA) and anterior-posterior (AP) direction to activate distinct sets of corticospinal neurons. We found that SAI increased during precision compared with power grip when AP, but not PA, currents were applied. Notably, SAI tested in the AP direction were similar during two-digit than five-digit precision grip. The M1 receives movement information from S1 through direct cortico-cortical pathways, so intra-hemispheric S1-M1 interactions using dual-site TMS were also evaluated. Stimulation of S1 attenuated M1 excitability (S1-M1 inhibition) during precision and power grip, while the S1-M1 inhibition ratio remained similar across tasks. Taken together,our findings suggest that distinct neural mechanisms for S1-M1 interactions mediate precision and power grip, presumably by modulating neural activity along thalamo-cortical pathways.


Assuntos
Córtex Motor , Potencial Evocado Motor/fisiologia , Mãos , Força da Mão/fisiologia , Humanos , Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Estimulação Magnética Transcraniana
14.
Sci Rep ; 11(1): 2507, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510183

RESUMO

Humans with spinal cord injury (SCI) show deficits in associating motor commands and sensory feedback. Do these deficits affect their ability to adapt movements to new demands? To address this question, we used a robotic exoskeleton to examine learning of a sensorimotor adaptation task during reaching movements by distorting the relationship between hand movement and visual feedback in 22 individuals with chronic incomplete cervical SCI and 22 age-matched control subjects. We found that SCI individuals showed a reduced ability to learn from movement errors compared with control subjects. Sensorimotor areas in anterior and posterior cerebellar lobules contribute to learning of movement errors in intact humans. Structural brain imaging showed that sensorimotor areas in the cerebellum, including lobules I-VI, were reduced in size in SCI compared with control subjects and cerebellar atrophy increased with increasing time post injury. Notably, the degree of spared tissue in the cerebellum was positively correlated with learning rates, indicating participants with lesser atrophy showed higher learning rates. These results suggest that the reduced ability to learn from movement errors during reaching movements in humans with SCI involves abnormalities in the spinocerebellar structures. We argue that this information might help in the rehabilitation of people with SCI.


Assuntos
Adaptação Fisiológica , Cerebelo/fisiologia , Neurorretroalimentação , Desempenho Psicomotor , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Idoso , Análise de Variância , Cerebelo/diagnóstico por imagem , Eletromiografia , Retroalimentação Sensorial , Feminino , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/etiologia , Adulto Jovem
15.
Exp Neurol ; 335: 113483, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987000

RESUMO

Paired corticospinal-motoneuronal stimulation (PCMS) elicits spinal synaptic plasticity in humans with chronic incomplete cervical spinal cord injury (SCI). Here, we examined whether PCMS-induced plasticity could be potentiated by acute intermittent hypoxia (AIH), a treatment also known to induce spinal synaptic plasticity in humans with chronic incomplete cervical SCI. During PCMS, we used 180 pairs of stimuli where corticospinal volleys evoked by transcranial magnetic stimulation over the hand representation of the primary motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle ~1-2 ms before the arrival of antidromic potentials elicited in motoneurons by electrical stimulation of the ulnar nerve. During AIH, participants were exposed to brief alternating episodes of hypoxic inspired gas (1 min episodes of 9% O2) and room air (1 min episodes of 20.9% O2). We examined corticospinal function by measuring motor evoked potentials (MEPs) elicited by cortical and subcortical stimulation of corticospinal axons and voluntary motor output in the FDI muscle before and after 30 min of PCMS combined with AIH (PCMS+AIH) or sham AIH (PCMS+sham-AIH). The amplitude of MEPs evoked by magnetic and electrical stimulation increased after both protocols, but most after PCMS+AIH, consistent with the hypothesis that their combined effects arise from spinal plasticity. Both protocols increased electromyographic activity in the FDI muscle to a similar extent. Thus, PCMS effects on spinal synapses of hand motoneurons can be potentiated by AIH. The possibility of different thresholds for physiological vs behavioral gains needs to be considered during combinatorial treatments.


Assuntos
Hipóxia/fisiopatologia , Plasticidade Neuronal , Quadriplegia/fisiopatologia , Quadriplegia/terapia , Medula Espinal/fisiopatologia , Adulto , Idoso , Estimulação Elétrica , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Neurônios Motores , Contração Muscular , Músculo Esquelético/fisiopatologia , Tratos Piramidais/fisiopatologia , Estimulação Magnética Transcraniana , Nervo Ulnar
16.
Neuropsychologia ; 136: 107265, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738940

RESUMO

Congenital mirror movements (CMMs) have been traditionally thought to occur due to the corticospinal tracts that project abnormally to both sides of the body. More recently, it has been suggested that both brain hemispheres are activated during intended unilateral movements due to deficient transcallosal inhibition, leading to mirror movements on the unintended side as well. To further understand the mechanisms underlying CMMs, we examined the pattern of interlimb transfer following visuomotor adaptation in 'DB', an individual with CMMs. DB's CMMs were confirmed by detecting EMG signals in both arms during intended unilateral movements, and also when transcranial magnetic stimulation (TMS) was applied to the motor cortex. Following that, DB performed reaching movements with the left arm under a visuomotor condition in which the visual display was rotated 30° counterclockwise about the start circle, and then with the right arm under the same (experiment 1) or opposing (experiment 2) rotation condition. DB's performances were compared with the data from control subjects. In both experiments, DB was able to adapt to the rotation with either arm; however, movement errors at the beginning of right-arm adaptation did not differ from those at the beginning of left-arm adaptation, indicating no transfer. These transfer patterns differ from those observed in controls, who demonstrated substantial transfer when the rotation directions were the same between the arms, but no transfer when they were opposite. These findings suggest that in DB, both hemispheres are activated during unilateral movements, but interhemispheric communication is impaired, thus resulting in mirror movements on the involuntary side.


Assuntos
Adaptação Fisiológica/fisiologia , Braço/fisiopatologia , Lateralidade Funcional/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Desempenho Psicomotor/fisiologia , Transferência de Experiência/fisiologia , Adolescente , Adulto , Humanos , Masculino , Transtornos dos Movimentos/congênito , Estimulação Magnética Transcraniana , Adulto Jovem
17.
Hum Mov Sci ; 652019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29866428

RESUMO

After-effects following sensorimotor adaptation are generally considered as evidence for the formation of an internal model, although evidence lacks on whether the absence of after-effects necessarily indicates that the adaptation did not result in the formation of an internal model. Here, we examined direct- and after-effects of dynamic adaptation with one arm at one workspace on subsequent performance with the other arm, as well as the same arm at another workspace. During training, subjects performed reaching movements under a novel dynamic condition with the right arm; during testing, they performed reaching movements with the left or right arm at a new workspace, under either the same dynamic condition (direct-effects) or a normal condition (after-effects). Results showed significant transfer within the same arm in terms of both direct- and after-effects, but significant transfer across the arms only in terms of direct-effects. These findings suggest that the formation of an internal model does not always result in after-effects. They also support the idea that the neural representation developed after sensorimotor adaptation comprise some aspects that are effector independent and other aspects that are effector dependent; and that direct- and after-effects following sensorimotor adaptation mainly reflect the effector-independent and the effector-dependent aspects, respectively.


Assuntos
Adaptação Fisiológica/fisiologia , Braço/fisiologia , Desempenho Psicomotor/fisiologia , Transferência de Experiência/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Movimento/fisiologia , Adulto Jovem
18.
J Neurosci ; 38(33): 7237-7247, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29976624

RESUMO

Afferent input from the periphery to the cortex contributes to the control of grasping. How sensory input is gated along the ascending sensory pathway and its functional role during gross and fine grasping in humans remain largely unknown. To address this question, we assessed somatosensory-evoked potential components reflecting activation at subcortical and cortical levels and psychophysical tests at rest, during index finger abduction, precision, and power grip. We found that sensory gating at subcortical level and in the primary somatosensory cortex (S1), as well as intracortical inhibition in the S1, increased during power grip compared with the other tasks. To probe the functional relevance of gating in the S1, we examined somatosensory temporal discrimination threshold by measuring the shortest time interval to perceive a pair of electrical stimuli. Somatosensory temporal discrimination threshold increased during power grip, and higher threshold was associated with increased intracortical inhibition in the S1. These novel findings indicate that humans gate sensory input at subcortical level and in the S1 largely during gross compared with fine grasping. Inhibitory processes in the S1 may increase discrimination threshold to allow better performance during power grip.SIGNIFICANCE STATEMENT Most of our daily life actions involve grasping. Here, we demonstrate that gating of afferent input increases at subcortical level and in the primary somatosensory cortex (S1) during gross compared with fine grasping in intact humans. The precise timing of sensory information is critical for human perception and behavior. Notably, we found that the ability to perceive a pair of electrical stimuli, as measured by the somatosensory temporal discrimination threshold, increased during power grip compared with the other tasks. We propose that reduced afferent input to the S1 during gross grasping behaviors diminishes temporal discrimination of sensory processes related, at least in part, to increased inhibitory processes within the S1.


Assuntos
Força da Mão/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Vias Aferentes/fisiologia , Eletromiografia , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Dedos/fisiologia , Humanos , Masculino , Movimento/fisiologia , Filtro Sensorial/fisiologia , Adulto Jovem
19.
IEEE Trans Neural Syst Rehabil Eng ; 26(5): 1067-1074, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29752242

RESUMO

Neurorehabilitation aims to induce beneficial neural plasticity in order to restore function following injury to the nervous system. There is an increasing evidence that appropriately timed functional electrical stimulation (FES) can promote associative plasticity, but the dosage is critical for lasting functional benefits. Here, we present a novel approach to closed-loop control of muscle stimulation for the rehabilitation of reach-to-grasp movements following stroke and spinal cord injury (SCI). We developed a simple, low-cost device to deliver assistive stimulation contingent on users' self-initiated movements. The device allows repeated practice with minimal input by a therapist, and is potentially suitable for home use. Pilot data demonstrate usability by people with upper limb weakness following SCI and stroke, and participant feedback was positive. Moreover, repeated training with the device over 1-2 weeks led to functional benefits on a general object manipulation assessment. Thus, automated FES delivered by this novel device may provide a promising and readily translatable therapy for upper limb rehabilitation for people with stroke and SCI.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Debilidade Muscular/reabilitação , Músculo Esquelético , Plasticidade Neuronal , Prática Psicológica , Desempenho Psicomotor , Recuperação de Função Fisiológica , Resultado do Tratamento
20.
J Neurophysiol ; 119(1): 251-261, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931614

RESUMO

Most cervical spinal cord injuries result in asymmetrical functional impairments in hand and arm function. However, the extent to which reach-to-grasp movements are affected in humans with incomplete cervical spinal cord injury (SCI) remains poorly understood. Using kinematics and electromyographic (EMG) recordings in hand and arm muscles we studied the different phases of unilateral self-paced reach-to-grasp movements (arm acceleration, hand opening and closing) to a small cylinder in the more and less affected arms of individuals with cervical SCI and in age-matched controls. We found that SCI subjects showed prolonged movement duration in both arms during arm acceleration, and hand opening and closing compared with controls. Notably, the more affected arm showed an additional increase in movement duration at the time to close the hand compared with the less affected arm. Also, the time at which the index finger and thumb contacted the object and the variability of finger movement trajectory were increased in the more compared with the less affected arm of SCI participants. Participants with prolonged movement duration during hand closing were those with more pronounced deficits in sensory function. The muscle activation ratio between the first dorsal interosseous and abductor pollicis brevis muscles decreased during hand closing in the more compared with the less affected arm of SCI participants. Our results suggest that deficits in movement kinematics during reach-to-grasp movements are more pronounced at the time to close the hand in the more affected arm of SCI participants, likely related to deficits in EMG muscle activation and sensory function. NEW & NOTEWORTHY Humans with cervical spinal cord injury usually present asymmetrical functional impairments in hand and arm function. Here, we demonstrate for the first time that deficits in movement kinematics during reaching and grasping movements are more pronounced at the time to close the hand in the more affected arm of spinal cord injury. We suggest that this is in part related to deficits in muscle activation ratios between hand muscles and a decrease in sensory function.


Assuntos
Força da Mão , Mãos/fisiopatologia , Movimento , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Idoso , Braço/inervação , Braço/fisiopatologia , Fenômenos Biomecânicos , Estudos de Casos e Controles , Vértebras Cervicais/lesões , Feminino , Mãos/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular , Sensação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA