RESUMO
Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.
Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Filogenia , Ranavirus , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Imunidade Inata/genética , Bass/imunologia , Ranavirus/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterináriaRESUMO
Objective: To explore the effects of serum glycated serum protein (GSP), homocysteine (Hcy) and cystatin-C (Cys-C) levels on pregnancy outcomes in patients with gestational diabetes mellitus (GDM). Methods: Retrospective selection of 247 pregnant women who underwent normal prenatal examinations in The Yan'an People's Hospital from January 2020 to May 2022 were included in this retrospective study. Among them, 119 were pregnant women with diabetes (GDM-group) and 128 were pregnant women with normal blood glucose (Normal-group). The levels of serum GSP, HCY, CYS-C, and incidence of adverse pregnancy outcomes were compared between the two groups. The clinical value of levels of serum GSP, Hcy, and Cys-C in predicting adverse pregnancy outcomes were analyzed. Results: Compared with the Normal-group, the overall incidence of adverse pregnancy outcomes, serum GSP, Hcy, and Cys-C levels in the GDM-group were significantly higher (p<0.05). Logistic regression analysis showed that the levels of GSP, Hcy, and Cys-C were independent risk factors for adverse pregnancy outcomes in the GDM-group (p<0.05). Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) for diagnosing adverse pregnancy outcomes in pregnant women with GDM using serum GSP, Hcy, and CysC levels alone were 0.817, 0.843, and 0.775, respectively. The AUC of the three indicators combined was 0.921, indicating that this combination has a good predictive value for diagnosing adverse outcomes in GDM-complicated pregnancies. Conclusions: GDM is associated with a high risk of adverse pregnancy outcomes. Levels of serum GSP, Hcy, and Cys-C are higher in patients with GDM. The higher the levels of GSP, Hcy, and Cys-C, the greater the risk of adverse pregnancy outcomes. Combining these three indicators can effectively predict maternal pregnancy outcomes.
RESUMO
The dual-specificity phosphatase (DUSP) family plays an important role in response to adverse external factors. In this study, the DUSP5 from Epinephelus coioides, an important marine fish in Southeast Asia and China, was isolated and characterized. As expected, E. coioides DUSP5 contained four conserved domains: a rhodanese homology domain (RHOD); a dual-specificity phosphatase catalytic domain (DSPc); and two regions of low compositional complexity, indicating that E. coioides DUSP5 belongs to the DUSP family. E. coioides DUSP5 mRNA could be detected in all of the examined tissues, and was mainly distributed in the nucleus. Infection with Singapore grouper iridovirus (SGIV), one of the most important pathogens of marine fish, could inhibit the expression of E. coioides DUSP5. The overexpression of DUSP5 could significantly downregulate the expression of the key SGIV genes (MCP, ICP18, VP19, and LITAF), viral titers, the activity of NF-κB and AP-I, and the expression of pro-inflammatory factors (IL-6, IL-8, and TNF-α) of E. coioides, but could upregulate the expressions of caspase3 and p53, as well as SGIV-induced apoptosis. The results demonstrate that E. coioides DUSP5 could inhibit SGIV infection by regulating E. coioides immune-related factors, indicating that DUSP5 might be involved in viral infection.