Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0267933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544474

RESUMO

Obesity and metabolic syndrome are of increasing global concern. In order to understand the basic biology and etiology of obesity, research has turned to animals across the vertebrate spectrum including zebrafish. Here, we carefully characterize zebrafish in a long-term obesogenic environment as well as zebrafish that went through early lifetime caloric restriction. We found that long-term obesity in zebrafish leads to metabolic endpoints comparable to mammals including increased adiposity, weight, hepatic steatosis and hepatic lesions but not signs of glucose dysregulation or differences in metabolic rate or mitochondrial function. Malnutrition in early life has been linked to an increased likelihood to develop and an exacerbation of metabolic syndrome, however fish that were calorically restricted from five days after fertilization until three to nine months of age did not show signs of an exacerbated phenotype. In contrast, the groups that were shifted later in life from caloric restriction to the obesogenic environment did not completely catch up to the long-term obesity group by the end of our experiment. This dataset provides insight into a slowly exacerbating time-course of obesity phenotypes.


Assuntos
Síndrome Metabólica , Peixe-Zebra , Animais , Dieta , Mamíferos , Síndrome Metabólica/complicações , Obesidade/etiologia , Obesidade/metabolismo , Fenótipo
2.
Cell Rep ; 23(6): 1728-1741, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742429

RESUMO

Anorexigenic pro-opiomelanocortin (Pomc)/alpha-melanocyte stimulating hormone (αMSH) neurons of the hypothalamic melanocortin system function as key regulators of energy homeostasis, also controlling somatic growth across different species. However, the mechanisms of melanocortin-dependent growth control still remain ill-defined. Here, we reveal a thus-far-unrecognized structural and functional connection between Pomc neurons and the somatotropic hypothalamo-pituitary axis. Excessive feeding of larval zebrafish causes leptin resistance and reduced levels of the hypothalamic satiety mediator pomca. In turn, this leads to reduced activation of hypophysiotropic somatostatin (Sst)-neurons that express the melanocortin receptor Mc4r, elevated growth hormone (GH) expression in the pituitary, and enhanced somatic growth. Mc4r expression and αMSH responsiveness are conserved in Sst-expressing hypothalamic neurons of mice. Thus, acquired leptin resistance and attenuation of pomca transcription in response to excessive caloric intake may represent an ancient mechanism to promote somatic growth when food resources are plentiful.


Assuntos
Dieta , Hormônio do Crescimento/metabolismo , Crescimento e Desenvolvimento/efeitos dos fármacos , Leptina/farmacologia , Pró-Opiomelanocortina/metabolismo , Somatostatina/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Larva/efeitos dos fármacos , Larva/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Peixe-Zebra , alfa-MSH/metabolismo
3.
PLoS One ; 10(3): e0120776, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799180

RESUMO

In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis mediating differential energy allocation.


Assuntos
Distribuição da Gordura Corporal , Restrição Calórica , Hiperfagia , Reprodução , Peixe-Zebra/fisiologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Peso Corporal , Tamanho Celular , Ingestão de Energia , Metabolismo Energético , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA