RESUMO
The metabolite itaconate plays a critical role in modulating inflammatory responses among macrophages infected with intracellular pathogens. However, the ability of itaconate to influence developing T cells responses is poorly understood. To determine if itaconate contributes to the quality of T cell mediated immunity against intracellular infection, we used Francisella tularensis as a model of vaccine induced immunity. Following vaccination with F. tularensis live vaccine strain, itaconate deficient mice (ACOD KO) had a prolonged primary infection but were more resistant to secondary infection with virulent F. tularensis relative to wild type controls. Improved resistance to secondary challenge was associated with both increased numbers and effector function of CD4+ and CD8+ T cells in ACOD KO mice. However, additional data suggest that improved T cell responses was not T cell intrinsic. These data underscore the consequences of metabolic perturbations within antigen presenting cells on the development of vaccine-elicited immune responses.
Assuntos
Francisella tularensis , Tularemia , Animais , Vacinas Bacterianas , Linfócitos T CD8-Positivos , Camundongos , Camundongos Endogâmicos C57BL , Succinatos , Vacinação , Vacinas AtenuadasRESUMO
Pulmonary infections elicit a combination of tissue-resident and circulating T cell responses. Understanding the contribution of these anatomically distinct cellular pools in protective immune responses is critical for vaccine development. Francisella tularensis is a highly virulent bacterium capable of causing lethal systemic disease following pulmonary infection for which there is no currently licensed vaccine. Although T cells are required for survival of F. tularensis infection, the relative contribution of tissue-resident and circulating T cells is not completely understood, hampering design of effective, long-lasting vaccines directed against this bacterium. We have previously shown that resident T cells were not sufficient to protect against F. tularensis, suggesting circulating cells may serve a critical role in host defense. To elucidate the role of circulating T cells, we used a model of vaccination and challenge of parabiotic mice. Intranasally infected naive mice conjoined to immune animals had increased numbers of circulating memory T cells and similar splenic bacterial burdens as vaccinated-vaccinated pairs. However, bacterial loads in the lungs of naive parabionts were significantly greater than those observed in vaccinated-vaccinated pairs, but despite early control of F. tularensis replication, all naive-vaccinated pairs succumbed to infection. Together, these data define the specific roles of circulating and resident T cells in defense against infection that is initiated in the pulmonary compartment but ultimately causes disseminated disease. These data also provide evidence for employing vaccination strategies that elicit both pools of T cells for immunity against F. tularensis and may be a common theme for other disseminating bacterial infections.
Assuntos
Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Francisella tularensis/imunologia , Células T de Memória/imunologia , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana/imunologia , Feminino , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Pneumopatias/imunologia , Pneumopatias/microbiologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Tularemia/imunologia , Tularemia/patologia , VacinaçãoRESUMO
Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.
Assuntos
COVID-19 , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Metabolismo dos Lipídeos , Índice de Gravidade de Doença , Animais , COVID-19/patologia , Cricetinae , Citocinas/sangue , Modelos Animais de Doenças , Edema , Fibrina , Hemorragia , Humanos , Interleucina-10 , Interleucina-6 , Lipidômica , Lipídeos/sangue , Fígado/patologia , Pulmão/patologia , Masculino , Mesocricetus , Obesidade , SARS-CoV-2 , Açúcares , Vasculite/patologia , Eliminação de Partículas ViraisRESUMO
Resolution of infection results in development of trained innate immunity which is typically beneficial for defense against unrelated secondary infection. Epigenetic changes including modification of histones via binding of various polar metabolites underlie the establishment of trained innate immunity. Therefore, host metabolism and this response are intimately linked. However, little is known regarding the influence of lipids on the development and function of trained immunity. Utilizing two models of pulmonary bacterial infection combined with multi-omic approaches, we identified persistent, pathogen-specific changes to the lung lipidome that correlated with differences in the trained immune response against a third unrelated pathogen. Further, we establish the specific cellular populations in the lung that contribute to this altered lipidome. Together these results expand our understanding of the pulmonary trained innate immune response and the contributions of host lipids in informing that response.
RESUMO
Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an increased trend of systemic IL-10 and IL-6, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.
RESUMO
The COVID-19 pandemic has affected more than 20 million people worldwide, with mortality exceeding 800,000 patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity. Each of these risk factors pathologically disrupts the lipidome, including immunomodulatory eicosanoid and docosanoid lipid mediators (LMs). We hypothesized that dysregulation of LMs may be a defining feature of the severity of COVID-19. By examining LMs and polyunsaturated fatty acid precursor lipids in serum from hospitalized COVID-19 patients, we demonstrate that moderate and severe disease are separated by specific differences in abundance of immune-regulatory and proinflammatory LMs. This difference in LM balance corresponded with decreased LM products of ALOX12 and COX2 and an increase LMs products of ALOX5 and cytochrome p450. Given the important immune-regulatory role of LMs, these data provide mechanistic insight into an immuno-lipidomic imbalance in severe COVID-19.
Assuntos
COVID-19 , Eicosanoides , Lipidômica , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Araquidonato 12-Lipoxigenase/imunologia , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/imunologia , Araquidonato 5-Lipoxigenase/metabolismo , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , Ciclo-Oxigenase 2/imunologia , Ciclo-Oxigenase 2/metabolismo , Eicosanoides/sangue , Eicosanoides/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismoRESUMO
The COVID-19 pandemic has affected more than 10 million people worldwide with mortality exceeding half a million patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity.1 Clear mechanistic understanding of how these comorbidities converge to enable severe infection is lacking. Notably each of these risk factors pathologically disrupts the lipidome and this disruption may be a unifying feature of severe COVID-19.1-7 Here we provide the first in depth interrogation of lipidomic changes, including structural-lipids as well as the eicosanoids and docosanoids lipid mediators (LMs), that mark COVID-19 disease severity. Our data reveal that progression from moderate to severe disease is marked by a loss of specific immune regulatory LMs and increased pro-inflammatory species. Given the important immune regulatory role of LMs, these data provide mechanistic insight into the immune balance in COVID-19 and potential targets for therapy with currently approved pharmaceuticals.8.
RESUMO
The COVID-19 pandemic has affected more than 10 million people worldwide with mortality exceeding half a million patients. Risk factors associated with severe disease and mortality include advanced age,hypertension, diabetes, and obesity. Clear mechanistic understanding of how these comorbidities converge to enable severe infection is lacking. Notably each of these risk factors pathologically disrupts the lipidome and this disruption may be a unifying feature of severe COVID-19. Here we provide the first in depth interrogation of lipidomic changes, including structural-lipids as well as the eicosanoids and docosanoids lipid mediators (LMs), that mark COVID-19 disease severity. Our data reveal that progression from moderate to severe disease is marked by a loss of specific immune regulatory LMs and increased pro-inflammatory species. Given the important immune regulatory role of LMs, these data provide mechanistic insight into the immune balance in COVID-19 and potential targets for therapy with currently approved pharmaceuticals.
RESUMO
Background: Effective therapeutics to treat COVID-19 are urgently needed. Remdesivir is a nucleotide prodrug with in vitro and in vivo efficacy against coronaviruses. Here, we tested the efficacy of remdesivir treatment in a rhesus macaque model of SARS-CoV-2 infection. Methods: To evaluate the effect of remdesivir treatment on SARS-CoV-2 disease outcome, we used the recently established rhesus macaque model of SARS-CoV-2 infection that results in transient lower respiratory tract disease. Two groups of six rhesus macaques were infected with SARS-CoV-2 and treated with intravenous remdesivir or an equal volume of vehicle solution once daily. Clinical, virological and histological parameters were assessed regularly during the study and at necropsy to determine treatment efficacy. Results: In contrast to vehicle-treated animals, animals treated with remdesivir did not show signs of respiratory disease and had reduced pulmonary infiltrates on radiographs. Virus titers in bronchoalveolar lavages were significantly reduced as early as 12hrs after the first treatment was administered. At necropsy on day 7 after inoculation, lung viral loads of remdesivir-treated animals were significantly lower and there was a clear reduction in damage to the lung tissue. Conclusions: Therapeutic remdesivir treatment initiated early during infection has a clear clinical benefit in SARS-CoV-2-infected rhesus macaques. These data support early remdesivir treatment initiation in COVID-19 patients to prevent progression to severe pneumonia.
RESUMO
Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Macaca mulatta/virologia , Pneumonia Viral/prevenção & controle , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Análise Mutacional de DNA , Progressão da Doença , Farmacorresistência Viral , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , SARS-CoV-2 , Prevenção Secundária , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacosRESUMO
Natural Killer (NK) cells suppress tumor initiation and metastasis. Most carcinomas are heterogeneous mixtures of epithelial, mesenchymal and hybrid tumor cells, but the relationships of these phenotypes to NK susceptibility are understood incompletely. Grainyhead-like-2 (GRHL2) is a master programmer of the epithelial phenotype, that is obligatorily down-regulated during experimentally induced Epithelial-Mesenchymal Transition (EMT). Here, we utilize GRHL2 re-expression to discover unifying molecular mechanisms that link the epithelial phenotype with NK-sensitivity. GRHL2 enhanced the expression of ICAM-1, augmenting NK-target cell synaptogenesis and NK killing of target cells. The expression of multiple interferon response genes, including ICAM1, anti-correlated with EMT. We identified two novel GRHL2-interacting proteins, the histone methyltransferases KMT2C and KMT2D. Mesenchymal-epithelial transition, NK-sensitization and ICAM-1 expression were promoted by GRHL2-KMT2C/D interactions and by GRHL2 inhibition of p300, revealing novel and potentially targetable epigenetic mechanisms connecting the epithelial phenotype with target cell susceptibility to NK killing.