Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 8(3): 458-467, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32639690

RESUMO

INTRODUCTION: B-cells are essential in the defense against Mycobacterium tuberculosis. Studies on isolated cells may not accurately reflect the responses that occur in vivo due to the presence of other cells. This study elucidated the influence of microenvironment complexity on B-cell polarization and function in the context of tuberculosis disease. METHODS: B-cell function was tested in whole blood, peripheral blood mononuclear cells (PBMCs), and as isolated cells. The different fractions were stimulated and the B-cell phenotype and immunoglobulin profiles analyzed. RESULTS: The immunoglobulin profile and developmental B-cell frequencies varied for each of the investigated sample types, while in an isolated cellular environment, secretion of immunoglobulin isotypes immunoglobulin A (IgA), IgG2, and IgG3 was hampered. The differences in the immunoglobulin profile highlight the importance of cell-cell communication for B-cell activation. Furthermore, a decrease in marginal zone B-cell frequencies and an increase in T1 B-cells was observed following cell isolation, indicating impaired B-cell development in response to in vitro antigenic stimulation in isolation. CONCLUSION: Our results suggest that humoral B-cell function and development was impaired likely due to a lack of costimulatory signals from other cell types. Thus, B-cell function should ideally be studied in a PBMC or whole blood fraction.


Assuntos
Linfócitos B , Leucócitos Mononucleares , Microambiente Celular , Humanos , Projetos Piloto , África do Sul
2.
Front Immunol ; 10: 2583, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736982

RESUMO

Although IL17A plays a protective role at the mucosal surface, when IL17A signaling becomes dysregulated, a pathological response is locally induced. At the early stages of Mycobacterium tuberculosis (M.tb) infection, IL17A contributes to granuloma formation and pathogen containment. In contrast, during disease progression, a dysregulated IL17A hyperinflammatory response drives tissue destruction through enhanced neutrophil recruitment. Cumulative research has implicated the PI3-Kinase pathways as one of the most relevant in the pathophysiology of inflammation. Evidence shows that IL-17A secretion and the expansion of the Th17 population is dependant in PI3-Kinase signaling, with the p110δ and p110γ isoforms playing a prominent role. The p110γ isoform promotes disease progression through dampening of the Th17 response, preventing pathogen clearance and containment. The p110γ gene, PIK3CG is downregulated in TB patients during late-stage disease when compared to healthy controls, demonstrating an important modulatory role for this isoform during TB. Conversely, the p110δ isoform induces IL-17A release from pulmonary γδ T-cells, committed Th17 cells and promotes neutrophil recruitment to the lung. Inhibiting this isoform not only suppresses IL-17A secretion from Th17 cells, but it also inhibits cytokine production from multiple T-helper cell types. Since increased IL-17A levels are observed to be localized in the lung compartments (BAL and lymphocytes) in comparison to circulating levels, an inhalable PI3Kδ inhibitor, which is currently utilized for inflammatory airway diseases characterized by IL-17A over-secretion, may be a therapeutic option for active TB disease.


Assuntos
Fosfatidilinositol 3-Quinases/imunologia , Isoformas de Proteínas/imunologia , Células Th17/imunologia , Tuberculose/imunologia , Animais , Humanos , Interleucina-17/imunologia
3.
Front Immunol ; 9: 1669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065729

RESUMO

Neutrophilia is a condition commonly observed in patients with late-stage tuberculosis, but evidence suggests that increased neutrophil influx begins early after infection in susceptible hosts and functions to promote a nutrient-replete niche that promotes Mycobacterium tuberculosis survival and persistence. As the disease progresses, an increase in the number of neutrophil-like cells is observed, all of which exhibit characteristics associated with (i) phenotypic and biochemical features of immaturity, (ii) the inability to activate T-cells, (iii) hyper-inflammation, and (iv) prolonged survival. Transcriptomics reveal a common set of molecules associated with the PI3-Kinase pathway that are dysregulated in patients with active tuberculosis. Closer inspection of their individual biological roles reveal their ability to modulate the IL-17/G-CSF axis, induce leukocyte receptor activation, and regulate apoptosis and motility. This review draws attention to neutrophil hyper-reactivity as a driving force for both the establishment and progression of tuberculosis disease in susceptible individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA