Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
3 Biotech ; 12(10): 249, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36043042

RESUMO

Employing a genome mining approach, this work aimed to further explore the secondary metabolism associated genes of Streptomyces sp. BRB081, a marine isolate. The genomic DNA of BRB081 was sequenced and assembled in a synteny-based pipeline for biosynthetic gene clusters (BGCs) annotation. A total of 27 BGCs were annotated, including a sibiromycin complete cluster, a bioactive compound with potent antitumor activity. The production of sibiromycin, a pyrrolobenzodiazepine, was confirmed by the analysis of obtained BRB081 extract by HPLC-MS/MS, which showed the presence of the sibiromycin ions themselves, as well as its imine and methoxylated forms. To verify the presence of this cluster in other genomes available in public databases, a genome neighborhood network (GNN) was constructed with the non-ribosomal peptide synthetase (NRPS) gene from Streptomyces sp. BRB081. Although the literature does not report the occurrence of the sibiromycin BGC in any other microorganism than Streptosporangium sibiricum, we have located this BGC in 10 other genomes besides the BRB081 isolate, all of them belonging to the Actinomycetia class. These findings strengthen the importance of uninterrupted research for new producer strains of secondary metabolites with uncommon biological activities. These results reinforced the accuracy and robustness of genomics in the screening of natural products. Furthermore, the unprecedented nature of this discovery confirms the unknown metabolic potential of the Actinobacteria phylum and the importance of continuing screening studies in this taxon. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03305-0.

2.
PLoS One ; 15(12): e0244385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33347500

RESUMO

Resorting to a One Strain Many Compounds (OSMAC) approach, the marine Streptomyces sp. BRB081 strain was grown in six different media settings over 1, 2, 3 or 7 days. Extractions of mycelium and broth were conducted separately for each media and cultivation period by sonication using methanol/acetone 1:1 and agitation with ethyl acetate, respectively. All methanol/acetone and ethyl acetate crude extracts were analysed by HPLC-MS/MS and data treatment was performed through GNPS platform using MZmine 2 software. In parallel, the genome was sequenced, assembled and mined to search for biosynthetic gene clusters (BGC) of secondary metabolites using the AntiSMASH 5.0 software. Spectral library search tool allowed the annotation of desferrioxamines, fatty acid amides, diketopiperazines, xanthurenic acid and, remarkably, the cyclic octapeptides surugamides. Molecular network analysis allowed the observation of the surugamides cluster, where surugamide A and the protonated molecule corresponding to the B-E isomers, as well as two potentially new analogues, were detected. Data treatment through MZmine 2 software allowed to distinguish that the largest amount of surugamides was obtained by cultivating BRB081 in SCB medium during 7 days and extraction of culture broth. Using the same data treatment, a chemical barcode was created for easy visualization and comparison of the metabolites produced overtime in all media. By genome mining of BRB081 four regions of biosynthetic gene clusters of secondary metabolites were detected supporting the metabolic data. Cytotoxic evaluation of all crude extracts using MTT assay revealed the highest bioactivity was also observed for extracts obtained in the optimal conditions as those for surugamides production, suggesting these to be the main active compounds herein. This method allowed the identification of compounds in the crude extracts and guided the selection of best conditions for production of bioactive compounds.


Assuntos
Antineoplásicos/isolamento & purificação , Metabolômica/métodos , Metabolismo Secundário , Streptomyces/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Técnicas Bacteriológicas , Vias Biossintéticas , Biologia Marinha , Família Multigênica , Filogenia , Streptomyces/química , Streptomyces/classificação , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA