Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6529-6537, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38789104

RESUMO

Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 µA µm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω µm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.

2.
Nanomaterials (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470809

RESUMO

Tungsten diselenide (WSe2) has emerged as a promising ambipolar semiconductor material for field-effect transistors (FETs) due to its unique electronic properties, including a sizeable band gap, high carrier mobility, and remarkable on-off ratio. However, engineering the contacts to WSe2 remains an issue, and high contact barriers prevent the utilization of the full performance in electronic applications. Furthermore, it could be possible to tune the contacts to WSe2 for effective electron or hole injection and consequently pin the threshold voltage to either conduction or valence band. This would be the way to achieve complementary metal-oxide-semiconductor devices without doping of the channel material.This study investigates the behaviour of two-dimensional WSe2 field-effect transistors with multi-layer palladium diselenide (PdSe2) as a contact material. We demonstrate that PdSe2 contacts favour hole injection while preserving the ambipolar nature of the channel material. This consequently yields high-performance p-type WSe2 devices with PdSe2 van der Waals contacts. Further, we explore the tunability of the contact interface by selective laser alteration of the WSe2 under the contacts, enabling pinning of the threshold voltage to the valence band of WSe2, yielding pure p-type operation of the devices.

3.
Rapid Commun Mass Spectrom ; 37(24): e9647, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37953542

RESUMO

RATIONALE: The measurement of the stable carbon and oxygen isotope ratio of (atmospheric) carbon dioxide (CO2 ) is a useful technique for the investigation and identification of the sources and sinks of the most abundant greenhouse gases by far. For this reason, we are presenting a measuring system here that enables a wide range of users to carry out stable isotope analysis of atmospheric CO2 using off-the-bench hardware and software. METHODS: The fully automated system uses cryogenic and gas chromatographic separation to analyse CO2 from 12-mL whole air samples and consists of an autosampler, a Gasbench II (GB), a downstream cryo trap and a continuous flow gas interface feeding into a sector field mass spectrometer (GC Pal/GB/Cold Trap/ConFlo IV/DeltaV Plus). The evaluation of the system performance was based on the analysis of samples prepared from eight CO2 sources (four CO2 reference gases and four artificial air tanks). RESULTS: The overall measurement uncertainty (averaged single standard deviation (1σ) of measurement replicates from each CO2 source) in the determination of the carbon and oxygen isotope ratio was 0.04‰ and 0.09‰ (n = 24). Furthermore, we were able to show that the measurement data also allowed for the quantification of the CO2 mole fraction, with a precision of 1.2 µmol mol-1 in the analysis range of 400-500 µmol mol-1 . CONCLUSIONS: Our protocol provides a detailed description of the measurement set-up and the analysis procedure, how raw data should be evaluated and gives recommendations for sample preparation and sampling to enable a fully automated whole air sample analysis. The quantification limit of CO2 mole fractions and measurement precision for carbon and oxygen isotope ratios of CO2 should meet the requirements of a wide range of users.

4.
Heliyon ; 9(10): e20823, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876456

RESUMO

As an alternative to activated carbon, biochar is a promising, environmentally friendly sorbent that can be used to remove organic groundwater pollutants, such as chlorinated ethenes (CEs). Stable isotope fractionation in biofilters is used to quantify pollutant degradation and to distinguish degradation from pollutant sorption on e.g. biochar. However, the sorption of CEs on biochar, and the potential abiotic fractionation processes remain to be tested. The sorption process of CEs and ethene on activated carbon and biochar was investigated with regard to the isotope effects for the differentiation from microbial degradation processes. Results from physical and chemical characterization of biochar indicated that biochar feedstock and pyrolysis conditions determined sorption performance depending on the surface chemistry and the pore size distribution of the coarse sorbent particles. The sorption capacity of the activated carbon was significantly higher with highly chlorinated ethenes, but similar to the biochars with low chlorination. Apparent carbon isotope fractionation factors (ε) of +0.1 to -4.4 ‰ were found above measurement uncertainties of GC/IRMS. The extent of isotope enrichment of the 13C bearing isotopologues in the residual aqueous phase (ε < 0) was characteristic for individual pairs of pollutant and sorbent material and could be related to pore-filling processes limited by the micropore size distribution of sorbent materials and the chemical properties of sorbed pollutants. Especially the large isotope fractionation during the sorption of ethene led to the assumption that diffusion processes within the pore matrix of the sorbent particles contributed to the observed isotope effects, but should still be considered a property of sorption. Concluding on the results indicated that sorption processes can have a significant contribution to carbon isotope fractionation in CEs and ethene. These should not be neglected in the evaluation of biofilters for groundwater purification, in which CEs are simultaneously degraded by microbes.

5.
Rapid Commun Mass Spectrom ; 34(24): e8929, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32830873

RESUMO

RATIONALE: Measurement of greenhouse gas (GHG) concentrations and isotopic compositions in the atmosphere is a valuable tool for predicting their sources and sinks, and ultimately how they affect Earth's climate. Easy access to unmanned aerial vehicles (UAVs) has opened up new opportunities for remote gas sampling and provides logistical and economic opportunities to improve GHG measurements. METHODS: This study presents synchronized gas chromatography/isotope ratio mass spectrometry (GC/IRMS) methods for the analysis of atmospheric gas samples (20-mL glass vessels) to determine the stable isotope ratios and concentrations of CO2 , CH4 and N2 O. To our knowledge there is no comprehensive GC/IRMS setup for successive measurement of CO2 , CH4 and N2 O analysis meshed with a UAV-based sampling system. The systems were built using off-the-shelf instruments augmented with minor modifications. RESULTS: The precision of working gas standards achieved for δ13 C and δ18 O values of CO2 was 0.2‰ and 0.3‰, respectively. The mid-term precision for δ13 C and δ15 N values of CH4 and N2 O working gas standards was 0.4‰ and 0.3‰, respectively. Injection quantities of working gas standards indicated a relative standard deviation of 1%, 5% and 5% for CO2 , CH4 and N2 O, respectively. Measurements of atmospheric air samples demonstrated a standard deviation of 0.3‰ and 0.4‰ for the δ13 C and δ18 O values, respectively, of CO2 , 0.5‰ for the δ13 C value of CH4 and 0.3‰ for the δ15 N value of N2 O. CONCLUSIONS: Results from internal calibration and field sample analysis, as well as comparisons with similar measurement techniques, suggest that the method is applicable for the stable isotope analysis of these three important GHGs. In contrast to previously reported findings, the presented method enables successive analysis of all three GHGs from a single ambient atmospheric gas sample.

6.
Sci Total Environ ; 615: 1061-1069, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751409

RESUMO

The evaluation of groundwater contaminant e.g. tetrachloroethene (PCE) degradation processes requires complete quantification of and pathway analysis of the groundwater contaminant under investigation. For example the reduction of PCE concentrations in the groundwater by unknown dissolution and/or sorption processes will impede interpretation of the fate and behaviour of such contaminants. In the present study PCE dissolution and sorption processes during anaerobic microbial degradation of chlorinated ethenes were investigated. For this purpose, microcosms were prepared using sediment samples from a PCE-contaminated aquifer, which in previous studies had demonstrated anaerobic organohalide respiration of PCE. Solid/water distribution coefficients (kd) of PCE were determined and validated by loss-on-ignition (LOI) and PCE sorption experiments. The determined kd magnitudes indicated methodological congruency, yielding values for sediment samples within a range of 1.15±0.02 to 5.93±0.34L·kg-1. The microcosm experiment showed lower PCE concentrations than expected, based on spiked PCE and observed anaerobic microbial degradation processes. Nevertheless the amount of PCE spike added was completely recovered albeit in the form of lower chlorinated metabolites. A delay due to dissolution processes was not responsible for this phenomenon. Sorption to sediments could only partially explain the reduction of PCE in the water phase. Accordingly, the results point to reversible sorption processes of PCE, possibly onto bacterial cell compartments and/or exopolymeric substances.


Assuntos
Água Subterrânea/química , Tetracloroetileno/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Monitoramento Ambiental , Sedimentos Geológicos/química , Tetracloroetileno/análise , Poluentes Químicos da Água/análise
7.
Environ Sci Pollut Res Int ; 24(32): 24803-24815, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28913587

RESUMO

Reductive dechlorination performed by organohalide-respiring bacteria (OHRB) enables the complete detoxification of certain emerging groundwater pollutants such as perchloroethene (PCE). Environmental samples from a contaminated site incubated in a lab-scale microcosm (MC) study enable documentation of such reductive dechlorination processes. As compound-specific isotope analysis is used to monitor PCE degradation processes, nucleic acid analysis-like 16S-rDNA analysis-can be used to determine the key OHRB that are present. This study applied both methods to laboratory MCs prepared from environmental samples to investigate OHRB-specific isotope enrichment at PCE dechlorination. This method linkage can enhance the understanding of isotope enrichment patterns of distinct OHRB, which further contribute to more accurate evaluation, characterisation and prospection of natural attenuation processes. Results identified three known OHRB genera (Dehalogenimonas, Desulfuromonas, Geobacter) in diverse abundance within MCs. One species of Dehalogenimonas was potentially involved in complete reductive dechlorination of PCE to ethene. Furthermore, the isotopic effects of PCE degradation were clustered and two isotope enrichment factors (ε) (- 11.6‰, - 1.7‰) were obtained. Notably, ε values were independent of degradation rates and kinetics, but did reflect the genera of the dechlorinating OHRB.


Assuntos
Isótopos de Carbono/análise , Chloroflexi/metabolismo , Desulfuromonas/metabolismo , Geobacter/metabolismo , Tetracloroetileno/metabolismo , Biodegradação Ambiental , Água Subterrânea/química , Halogenação
8.
Rapid Commun Mass Spectrom ; 31(20): 1699-1708, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28805260

RESUMO

RATIONALE: Bacterial reductive dechlorination of the groundwater contaminant tetrachloroethene (PCE) involves the formation of lower chlorinated metabolites. Metabolites can be instantaneously formed and consumed in this sequential process; quantification and validation of their isotopic effects conventionally rely on separate laboratory microcosm studies. Here, we present an evaluation method enabling the determination of the carbon isotope enrichment factor (ε) for the intermediate cis-dichloroethene (cis-DCE) by a single laboratory microcosm study initially amending the precursor PCE only. METHODS: Environmental samples harboring organohalide-respiring bacteria were incubated under anaerobic conditions and then successively and repeatedly amended with PCE and cis-DCE in two separate laboratory microcosm studies. Reductive dechlorination was monitored by analyzing liquid samples using Purge-and-Trap gas chromatography isotope ratio mass spectrometry GC/MS-C/IRMS. The prerequisites of the presented evaluation method are mass and δ-value balancing. The evaluation method was validated by agglomerative hierarchical classification of Rayleigh plot data points. RESULTS: The sample-sensitive range of εcis-DCE extended from -10.6 ± 0.2‰ to -26.8 ± 0.6‰ (R2 ≥98%). The maximum standard deviations of εcis-DCE were ±1.8‰ for single microcosms, ±1.8‰ for replicates and ±1.0‰ for the compiled replicate data of PCE and cis-DCE amendments. A linear regression of the εcis-DCE for replicates obtained by each amendment study showed a slope of 95% (5 of the 7 data points are within a 95% confidence interval), demonstrating factor congruency and the practicability of the evaluation method. CONCLUSIONS: We found metabolite degradation and formation to be sequential but also stepwise during bacterial reductive dechlorination. The stepwise phases of the degradation of the intermediate eliminate the impact of instantaneous precursor degradation. These stepwise sections were used to determine εcis-DCE -values. Our results showed the validity of εcis-DCE -values over a wide range at initial precursor degradation (PCE). The presented evaluation method could substantially decrease lab costs for microcosm studies designed for εcis-DCE determinations. Moreover, the results indicated that the evaluation method can be applied to other PCE-metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA