Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(21): 4597-4614.e26, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738970

RESUMO

SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/virologia , Imunidade Inata/genética , Pandemias , SARS-CoV-2/genética
2.
Front Immunol ; 14: 1209926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346045

RESUMO

Lymphocystis disease is one of the main viral pathologies affecting cultured gilthead seabream (Sparus aurata) in the Mediterranean region. Recently, we have developed a DNA vaccine based on the major capsid protein (MCP) of the Lymphocystis disease virus 3 (LCDV-Sa). The immune response triggered by either LCDV-Sa infection or vaccination have been previously studied and seem to be highly related to the modulation of the inflammatory and the IFN response. However, a comprehensive evaluation of immune-related gene expression in vaccinated fish after viral infection to identify immunogenes involved in vaccine-induced protection have not been carried out to date. The present study aimed to fulfill this objective by analyzing samples of head-kidney, spleen, intestine, and caudal fin from fish using an OpenArray® platform containing targets related to the immune response of gilthead seabream. The results obtained showed an increase of deregulated genes in the hematopoietic organs between vaccinated and non-vaccinated fish. However, in the intestine and fin, the results showed the opposite trend. The global effect of fish vaccination was a significant decrease (p<0.05) of viral replication in groups of fish previously vaccinated, and the expression of the following immune genes related to viral recognition (tlr9), humoral and cellular response (rag1 and cd48), inflammation (csf1r, elam, il1ß, and il6), antiviral response (isg15, mx1, mx2, mx3), cell-mediated cytotoxicity (nccrp1), and apoptosis (prf1). The exclusive modulation of the immune response provoked by the vaccination seems to control the progression of the infection in the experimentally challenged gilthead seabream.


Assuntos
Infecções por Vírus de DNA , Iridoviridae , Dourada , Animais , Iridoviridae/fisiologia , DNA , Imunidade
3.
Fish Shellfish Immunol ; 128: 612-619, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36007830

RESUMO

IFN-I generates an antiviral state by inducing the expression of numerous genes, called IFN-stimulated genes, ISGs, including ISG15, which is the only ISG with cytokine-like activity. In a previous study, we developed the Dl_ISG15_E11 cell line, which consisted of E11 cells able to express and secrete sea bass ISG15. The current study is a step forward, analysing the effect of secreted sea bass ISG15 on RGNNV replication in E11 cells, and looking into its immunomodulatory activity in order to corroborate its cytokine-like activity. The medium from ISG15-produccing cells compromised RGNNV replication, as it has been demonstrated both, by reduction in the viral genome synthesis and, specially, in the yield of infective viral particles. The implication of sea bass ISG15 in this protection has been demonstrated by ISG15 removal, which decreased the percentage of surviving cells upon viral infection, and by incubation of RGNNV-infected cells with a recombinant sea bass ISG15 protein, which resulted in almost full protection. Furthermore, the immunomodulatory activity of extracellular sea bass ISG15 has been demonstrated, which reaffirms a cytokine-like role for this protein.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Animais , Antivirais , Bass/genética , Citocinas/genética , Nodaviridae/genética
4.
Animals (Basel) ; 11(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072482

RESUMO

Lymphocystis disease is the main viral pathology reported in gilthead seabream. Its etiological agent is Lymphocystis disease virus 3 (LCDV-Sa), genus Lymphocystivirus, family Iridoviridae. There are no effective treatments or vaccines for LCDV control, thus the main aim of this study was to develop a DNA vaccine, and to evaluate both the protection conferred against LCDV-Sa infection and the immune response in vaccinated fish. The vaccine was constructed by cloning the mcp gene (ORF LCDVSa062R) into pcDNA3.1/NT-GFP-TOPO. Two independent vaccination trials were conducted. In the first one, 5-7 g fish were intramuscularly injected with the vaccine (pcDNA-MCP) or the empty-plasmid, and the distribution and expression of the vaccine was investigated. Furthermore, vaccinated fish were challenged with LCDV-Sa in order to access the protective capacity of the vaccine. In the second trial, 70-100 g fish were vaccinated as specified, and the immune response was evaluated analyzing the expression of 23 immune-related genes and the production of specific antibodies. The results showed that the vaccine triggers an immune response characterized by the overexpression of genes relating to the inflammatory process, but not the innate antiviral immunity relating to type I IFN (interferon), and also induces the production of specific neutralizing antibodies, which could explain the protection against LCDV-Sa in vaccinated fish.

5.
Food Environ Virol ; 12(2): 174-179, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32086771

RESUMO

Lymphocystis disease virus (LCDV), the causative agent of lymphocystis disease (LCD), is a waterborne pathogen that uses the external surfaces, including the gills, as portals to gain access to fish host. However, there are no data on LCDV persistence in the aquatic environment. In this study, the persistence of LCDV in natural (raw), treated (autoclaved and filtered) and synthetic seawater held at 22 and 18 °C has been evaluated. The estimated T99 values for LCDV in seawater ranged from 2.7 to 242 days depending on seawater type and temperature, with the highest value recorded at 22 °C in autoclaved seawater. Microbiota and temperature seem to be the main factors affecting the persistence of LCDV in seawater. The results indicated that LCDV is more stable in treated seawater than most of the fish pathogenic viruses studied so far, supporting the relevance of this medium for the prevalence of LCD in fish farms.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Iridoviridae/isolamento & purificação , Água do Mar/virologia , Animais , Infecções por Vírus de DNA/virologia , Iridoviridae/classificação , Iridoviridae/genética , Iridoviridae/fisiologia , Água do Mar/química , Temperatura
6.
Sci Rep ; 9(1): 14068, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575937

RESUMO

European sea bass (Dicentrarchus labrax) is severely affected by nervous necrosis disease, caused by nervous necrosis virus (NNV). Two out of the four genotypes of this virus (red-spotted grouper nervous necrosis virus, RGNNV; and striped jack nervous necrosis virus, SJNNV) have been detected in sea bass, although showing different levels of virulence to this fish species. Thus, sea bass is highly susceptible to RGNNV, whereas outbreaks caused by SJNNV have not been reported in this fish species. The role of the capsid protein (Cp) amino acids 247 and 270 in the virulence of a RGNNV isolate to sea bass has been evaluated by the generation of recombinant RGNNV viruses harbouring SJNNV-type amino acids in the above mentioned positions (Mut247Dl965, Mut270Dl965 and Mut247 + 270Dl965). Viral in vitro and in vivo replication, virus virulence and fish immune response triggered by these viruses have been analysed. Mutated viruses replicated on E-11 cells, although showing some differences compared to the wild type virus, suggesting that the mutations can affect the viral cell recognition and entry. In vivo, fish mortality caused by mutated viruses was 75% lower, and viral replication in sea bass brain was altered compared to non-mutated virus. Regarding sea bass immune response, mutated viruses triggered a lower induction of IFN I system and inflammatory response-related genes. Furthermore, mutations caused changes in viral serological properties (especially the mutation in amino acid 270), inducing higher seroconversion and changing antigen recognition.


Assuntos
Bass/virologia , Proteínas do Capsídeo/genética , Doenças dos Peixes/virologia , Nodaviridae/patogenicidade , Infecções por Vírus de RNA/veterinária , Substituição de Aminoácidos/genética , Animais , Nodaviridae/genética , Nodaviridae/fisiologia , Infecções por Vírus de RNA/virologia , Virulência/genética , Replicação Viral
7.
Dis Aquat Organ ; 132(2): 151-156, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30628581

RESUMO

Lymphocystis disease, caused by the iridovirus lymphocystis disease virus (LCDV), is characterized by the appearance of tumour-like lesions on the skin of affected animals associated with several environmental factors and/or with stress due to the intensive culture conditions of fish farms. In a previous study, the genomes of a new LCDV species, LCDV-Sa, were detected, together with 2 previously unknown viruses, Sparus aurata papillomavirus 1 (SaPV1) and Sparus aurata polyomavirus 1 (SaPyV1). Gilthead seabream from 17 fish farms in Spain, Italy and Turkey were sampled between 2009 and 2015 to investigate the role of the newly described SaPV1 and SaPyV1 viruses in lymphocystis disease development. Our results show that in diseased fish, either or both of the new viruses are almost invariably detected together with LCDV (98%). In asymptomatic fish, these viruses were detected in a much lower percentage (28%) and mostly in concurrence with LCDV (24%). These data confirm the suspected association among the 3 different viruses during lymphocystis disease development in gilthead seabream and warrant future studies to establish their respective contributions.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Polyomavirus , Dourada , Animais , Infecções por Vírus de DNA/veterinária , Itália , Espanha , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA