Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Res ; 228: 115930, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37076033

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are stable organic chemicals, which have been used globally since the 1940s and have caused PFAS contamination around the world. This study explores perfluorooctanoic acid (PFOA) enrichment and destruction by a combined method of sorption/desorption and photocatalytic reduction. A novel biosorbent (PG-PB) was developed from raw pine bark by grafting amine groups and quaternary ammonium groups onto the surface of bark particles. The results of PFOA adsorption at low concentration suggest that PG-PB has excellent removal efficiency (94.8%-99.1%, PG-PB dosage: 0.4 g/L) to PFOA in the concentration range of 10 µg/L to 2 mg/L. The PG-PB exhibited high adsorption efficiency regarding PFOA, being 456.0 mg/g at pH 3.3 and 258.0 mg/g at pH 7 with an initial concentration of 200 mg/L. The groundwater treatment reduced the total concentration of 28 PFAS from 18 000 ng/L to 9900 ng/L with 0.8 g/L of PG-PB. Desorption experiments examined 18 types of desorption solutions, and the results showed that 0.05% NaOH and a mixture of 0.05% NaOH + 20% methanol were efficient for PFOA desorption from the spent PG-PB. More than 70% (>70 mg/L in 50 mL) and 85% (>85 mg/L in 50 mL) of PFOA were recovered from the first and second desorption processes, respectively. Since high pH promotes PFOA degradation, the desorption eluents with NaOH were directly treated with a UV/sulfite system without further adjustment. The final PFOA degradation and defluorination efficiency in the desorption eluents with 0.05% NaOH + 20% methanol reached 100% and 83.1% after 24 h reaction. This study proved that the combination of adsorption/desorption and a UV/sulfite system for PFAS removal is a feasible solution for environmental remediation.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Água , Adsorção , Metanol , Hidróxido de Sódio , Fluorocarbonos/análise , Caprilatos , Poluentes Químicos da Água/análise
2.
Materials (Basel) ; 15(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143629

RESUMO

Modification of zeolites with organic compounds is of increasing interest due to their significant potential in removing emerging pollutants from water. In this work, zeolites from fly ash with three different structure types, NaX (faujasite), NaA (Linde A) and NaP1 (gismondine), were modified with ß-cyclodextrin (ß-CD), and their adsorption efficacy towards tetracycline (TC) antibiotic in aqueous solutions have been studied. To assess the effect of modification on the zeolites, they were subjected to chemical, mineralogical and surface analyses using X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscope (SEM), N2 adsorption/desorption isotherm, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The maximum adsorption capacity for NaX-CD, NaA-CD and NaP1-CD was around 48, 60, and 38 mg/g, respectively. The fastest adsorption rate was observed for NaP1-CD, which achieved adsorption equilibria after 200 min, while for NaX-CD and NaA-CD it was established after around 24 h. The kinetic data were best described by the Elovich model, followed by pseudo-second order, while the Sips and Redlich-Peterson models were the most suitable to describe the adsorption isotherms. Based on the adsorption data as well as FTIR and XPS results, TC adsorption efficacy is strongly related to the amount of CD attached to the mineral, and hydrogen bonding formation probably plays the major role between CDs and adsorbate.

3.
Water Res ; 224: 119110, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126630

RESUMO

Ion exchange technology removes ionic compounds from waters effectively but treatment of the spent regenerant is expensive. The bioregeneration of sulfate-laden strong base anion exchange resin was successfully tested using both pure and mixed sulfate-reducing bacterial cultures. The resin was first used for removal of sulfate from neutral (pH 6.7 ± 0.5) synthetic sodium sulfate solutions, after which the spent resin was regenerated by incubating with a viable sulfate-reducing bacterial culture in batch and column modes. In the batch bioregeneration tests, the achieved bioregeneration was 36-95% of the original capacity of the fresh resin (112 mg SO42-/g) and it increased with regeneration time (1-14 days). The capacity achieved in the column tests during 24 hours of bioregeneration was 107 mg SO42-/g after the first regeneration cycle. During the bioregeneration, sulfate was mainly reduced by the sulfate-reducing bacteria (approx. 60%), but part of it was only detached from the resins (approx. 30%). The resin-attached sulfate was most likely replaced with ions present in the liquid sulfate-reducing bacterial culture (e.g., HCO3-, HS-, and Cl-). During the subsequent exhaustion cycles with the bioregenerated resin, the pH of the treated sodium sulfate solution increased from the original 6.7 ± 0.5 to around 9. The study showed that biological sulfate reduction could be used for sulfate removal in combination with ion exchange, and that the exhausted ion exchange resins could be regenerated using a liquid sulfate-reducing bacterial culture without producing any brine.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Resinas de Troca Aniônica/química , Troca Iônica , Resinas de Troca Iônica , Sulfatos/química , Óxidos de Enxofre , Poluentes Químicos da Água/química
4.
J Hazard Mater ; 440: 129700, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969955

RESUMO

Vanadium (V) and microplastics in soils draw increasing attention considering their significant threats to ecosystems. However, little is known about the vertical co-distribution of V and microplastics in soil profile and their combined effects on microbial community dynamics and assembly. This study investigated the spatial distribution of V and microplastics in the soils at a V smelting site and the associated microbial community characteristics along the vertical gradient. Both V and microplastics were found in the 50 cm soil profile with average concentrations of 203.5 ± 314.4 mg/kg and 165.1 ± 124.8 item/kg, respectively. Topsoil (0-20 cm) and subsoil (20-50 cm) displayed distinct microbial community compositions. Metal-tolerant (e.g., Spirochaeta, Rubellimicrobium) and organic-degrading (e.g., Bradyrhizobium, Pseudolabrys) taxa as biomarkers were more abundant in the topsoil layer. V and microplastics directly affected the microbial structure in the topsoil and had indirect influences in the subsoil, with direct impacts from organic matter. In topsoil, deterministic processes were more prevalent for community assembly, whereas stochastic processes governed the subsoil. The interspecific relationship was closer in topsoil with greater network complexity and higher modularity. These findings promote the understanding of distinct heterogeneity of microbial communities jointly driven by V and microplastics in soil environment.


Assuntos
Microbiota , Solo , Microplásticos , Plásticos , Solo/química , Microbiologia do Solo , Vanádio
5.
Environ Technol ; 43(7): 971-982, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32804029

RESUMO

In this study, the suitability of natural peat (Nat-Peat) and HCl-modified peat (M-Peat) as a sorbent for purification of mining water was evaluated in two different small-scale pilot systems: a continuous stirred tank reactor (CSTR) and a horizontal flow filter (HFF). The effect of process parameters (peat type, peat dose, mixing time, mixing intensity) on metal (metalloid) removal in the CSTR system was also investigated. In the CSRT, Nat-Peat achieved higher removal of Ni (<80%) and As (∼61%) than M-Peat (72% and 26% for Ni and As, respectively). In the HFF, Nat-Peat achieved slightly lower maximum removal of Ni (<96%) than M-Peat (<98%) and higher removal of As and Sb (<87% and 8%) than M-Peat (<35% and 7%). Thus, chemical modification (HCl) of peat did not improve its affinity for metal and metalloids. Among the process parameters studied, peat dose exerted the strongest effect on residual concentrations of Ni, As and Sb. Higher removal of Ni and As was achieved in treatment combinations involving high peat dose (2 g/L), mixing time (60 min) and mixing intensity (300 rpm), but the effect of increasing level of these factors was not linear. This study showed that peat can be a viable sorbent material in CSTR systems (followed by sedimentation) if sorbent particle removal can be improved. Use of peat in HFF systems is not viable, due to its inability to cope with large water volumes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Metais/análise , Mineração , Solo , Poluentes Químicos da Água/análise
6.
Chemosphere ; 286(Pt 2): 131817, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426130

RESUMO

Removal of vanadium from liquid waste streams protects the environment from toxic vanadium species and promotes the recovery of the valuable metal. In this study, real mining ditch water was sampled from a closed vanadium mine (V-Fe-Ti oxide deposit, Finland) and used in sorption experiments at prevailing vanadium concentration (4.66-6.85 mg/L) and pH conditions (7.02-7.83). The high concentration of vanadium in the water represents a potential health concern according to the initial risk assessment carried out in this study. Vanadium was efficiently removed using four different iron sorbents: ferric oxyhydroxide with some goethite (CFH-12), poorly crystallized akaganéite (GEH 101), ferric groundwater treatment residual (GWTR), and GWTR-modified peat (GWTR-Peat). Higher dosage (6 g/L with 24 h contact time) and longer contact time (72 h using 1 g/L dosage) resulted in removal efficiencies of higher than 85%. Kinetic data were well represented by the Elovich model while intra-particle diffusion and Boyd models suggested that the sorption process in a real water matrix was significantly controlled by both film diffusion and intra-particle diffusion. Column studies with CFH-12, GEH 101, and GWTR-Peat showed that the breakthrough started earlier with the mining ditch water compared to a synthetic vanadium solution (investigated only with CFH-12), whereas GEH 101 proved to have the best performance in column mode. The Thomas and Yoon-Nelson column models were found to agree with the experimental data fairly well with the 50% breakthrough time being close to the experimental value for all the studied sorbents.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Ferro , Vanádio , Água , Poluentes Químicos da Água/análise
7.
Water Res ; 205: 117676, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600233

RESUMO

Hydrated electrons (e-aq,E= -2.9 V) generated by advanced reduction processes (ARPs) have been proved to be a promising approach to eliminate various per- and polyfluoroalkyl substances (PFASs) in water. In this study, the decomposition of perfluorooctanoic acid (PFOA) in a complex water matrix by e-aq generated from the UV/sulfite process was investigated. The effect of pH (9-12) and co-existing compounds (chloride, nitrate, phosphate, carbonate and humic acid) on PFOA degradation efficiency was studied. In addition, the intermediates and possible degradation pathways were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS). The results showed that the concentration of PFOA was below the detection limit (10 µg/L) after 1 h (conditions: C0 10 mg/L, initial pH = 10, sulfite 10 mM) while 89% defluorination was achieved after 24 h. Using a higher initial pH (pH = 12) greatly enhanced the PFOA degradation as 100% degradation and 98% defluorination were achieved after 24 h. The presence of carbonate (> 5 mM), nitrate (> 2 mM) and humic acid (> 25 mg/L) showed a significant negative effect on PFOA degradation via a UV blocking effect or quenching of hydrated electrons while the presence of chloride and phosphate had a smaller effect on PFOA degradation. Even at extremely high concentrations of chloride (1.709 M, pH = 11.25), the defluorination ratio reached 97% after 24 h of reaction time. During the process, short-chain perfluorinated carboxylic acids (PFCAs, C < 7) and hydrogen substituted compounds were detected, which implies that chain-shortening and H/F change reactions had occurred. Moreover, this confirmed the generation of sulfonated and unsaturated intermediates during the process, which disclosed valuable new mechanistic insights into PFOA degradation.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Caprilatos , Cromatografia Líquida , Sulfitos , Espectrometria de Massas em Tandem , Água
8.
J Hazard Mater ; 416: 125961, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492875

RESUMO

This study investigated the removal of vanadium from mining waters at a closed mine site (Mustavaara, Finland) using granular ferric oxyhydroxide (CFH-12) on pilot scale. Two filter systems, pilot A and pilot B, were placed in different streams, where the influent in pilot A contained a higher and very variable vanadium concentration (6.46-99.1 mg/L), while the pilot B treated influent had lower vanadium concentrations (0.443-2.33 mg/L). The operation periods were 51 days for pilot A and 127 days for pilot B. Water quality analyses revealed that vanadium was efficiently captured in the filter system in both pilots. X-ray fluorescence analysis revealed that the filter beds were not fully saturated with vanadium. X-ray photoelectron spectroscopy confirmed that oxidised vanadium (5+) existed in the used CFH-12 and the carbon content in the used material had increased due to the adsorbed organic compounds. For comparison, lab-scale coagulation experiments were conducted using ferric sulphate for the influent of pilot A (the sampled batch contained 15.9 mg/L V). The optimum coagulant dosage was 350 mg/L (>93% vanadium removal) at the original pH (7.8-7.9) of the influent, whereas the required coagulant amount decreased when the influent pH was adjusted to 4.6-4.8.


Assuntos
Vanádio , Poluentes Químicos da Água , Ferro , Mineração , Compostos Orgânicos , Qualidade da Água
9.
Front Microbiol ; 12: 693615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276626

RESUMO

Vanadium - a transition metal - is found in the ferrous-ferric mineral, magnetite. Vanadium has many industrial applications, such as in the production of high-strength low-alloy steels, and its increasing global industrial consumption requires new primary sources. Bioleaching is a biotechnological process for microbially catalyzed dissolution of minerals and wastes for metal recovery such as biogenic organic acid dissolution of bauxite residues. In this study, 16S rRNA gene amplicon sequencing was used to identify microorganisms in Nordic mining environments influenced by vanadium containing sources. These data identified gene sequences that aligned to the Gluconobacter genus that produce gluconic acid. Several strategies for magnetite dissolution were tested including oxidative and reductive bioleaching by acidophilic microbes along with dissimilatory reduction by Shewanella spp. that did not yield significant metal release. In addition, abiotic dissolution of the magnetite was tested with gluconic and oxalic acids, and yielded 3.99 and 81.31% iron release as a proxy for vanadium release, respectively. As a proof of principle, leaching via gluconic acid production by Gluconobacter oxydans resulted in a maximum yield of 9.8% of the available iron and 3.3% of the vanadium. Addition of an increased concentration of glucose as electron donor for gluconic acid production alone, or in combination with calcium carbonate to buffer the pH, increased the rate of iron dissolution and final vanadium recoveries. These data suggest a strategy of biogenic organic acid mediated vanadium recovery from magnetite and point the way to testing additional microbial species to optimize the recovery.

10.
Chemosphere ; 278: 130445, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33838423

RESUMO

In this study, two-step surface modification of sawdust using triethanolamine (at 180 °C) and iodomethane (at 42 °C) was performed to produce a novel quaternized biosorbent, TEA-I-SD. The characterization studies revealed significant morphological changes in the sawdust and successful quaternization with a nitrogen content of 5.75%. The highest vanadium removal (96.2%) was achieved at pH 4 (dosage 1 g/L, initial vanadium concentration 19.1 mg/L). Equilibrium was achieved within 8 h of contact time and the adsorption kinetics were well fitted with the pseudo-second-order model. Both film diffusion and intra-particle diffusion contributed to the adsorption process, while the latter was the rate-limiting step. The maximum vanadium adsorption capacity of TEA-I-SD (35.0 mg/g, pH 4) was close to the theoretical value obtained from the Langmuir model. The best fit was achieved with the Redlich-Peterson model, exhibiting a monolayer adsorption phenomenon. Tests with real mine water containing 11 mg/L of vanadium also confirmed its high removal (91.3%, dosage 1 g/L) using TEA-I-SD at pH 4. The TEA-I-SD could be reused three times without significant capacity loss after regeneration, although the desorption efficiency was rather low (synthetic solution: 38.5-40.5% and mine water: 26.2-43.1%).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Etanolaminas , Hidrocarbonetos Iodados , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Vanádio
11.
Chemosphere ; 264(Pt 1): 128443, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33022503

RESUMO

Aminated peat (termed PG-Peat) produced using polyethylenimine and glycidyltrimethylammonium chloride was used for the removal of sulphate from real acid mine drainage (AMD) in batch and column mode sorption studies. In the batch tests, the highest sulphate removal capacity achieved was 125.7 mg/g. PG-Peat was efficient and rapid in sulphate removal from AMD even at low temperatures (2-5 °C), achieving equilibrium within a contact time of 30 min. The PG-Peat column treating real AMD showed even higher sulphate uptake capacity (154.2 mg SO42-/g) than the batch sorption studies. The regenerative and practical applicability of PG-Peat was also tested in column set-ups using synthetic sulphate solutions (at pH 5.8 and pH 2.0). The sulphate uptake capacity obtained was higher in column mode when the solutions were treated at acidic pH (2.0) compared to pH 5.8. This could be attributed to the presence of cationized amine groups on PG-Peat under acidic pH conditions. Almost complete sulphate desorption was achieved with NaCl in the column that treated synthetic sulphate solution at pH 5.8, while the lowest desorption rates were observed in the column that treated acidic synthetic sulphate solution (pH 2).


Assuntos
Mineração , Poluentes Químicos da Água , Ácidos , Adsorção , Concentração de Íons de Hidrogênio , Solo , Sulfatos
12.
Environ Res ; 193: 110564, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33278473

RESUMO

The wider presence of pharmaceuticals and personal care products in nature is a major cause for concern in society. Among pharmaceuticals, the anti-inflammatory drug ibuprofen has commonly been found in aquatic and soil environments. We produced a Co-doped carbon matrix (Co-P 850) through the carbonization of Co2+ saturated peat and used it as a peroxymonosulphate activator to aid ibuprofen degradation. The properties of Co-P 850 were analysed using field emission scanning electron microscopy, energy filtered transmission electron microscopy and X-ray photoelectron spectroscopy. The characterization results showed that Co/Fe oxides were generated and tightly embedded into the carbon matrix after carbonization. The degradation results indicated that high temperature and slightly acidic to neutral conditions (pH = 5 to 7.5) promoted ibuprofen degradation efficiency in the Co-P 850/peroxymonosulphate system. Analysis showed that approx. 52% and 75% of the dissolved organic carbon was removed after 2 h and 5 h of reaction time, respectively. Furthermore, the existence of chloride and bicarbonate had adverse effects on the degradation of ibuprofen. Quenching experiments and electron paramagnetic resonance analysis confirmed that SO4·-, ·OH and O2·- radicals together contributed to the high ibuprofen degradation efficiency. In addition, we identified 13 degradation intermediate compounds and an ibuprofen degradation pathway by mass spectrometry analysis and quantum computing. Based on the results and methods presented in this study, we propose a novel way for the synthesis of a Co-doped catalyst from spent NaOH-treated peat and the efficient catalytic degradation of ibuprofen from contaminated water.


Assuntos
Ibuprofeno , Poluentes Químicos da Água , Carbono , Catálise , Metodologias Computacionais , Peróxidos , Teoria Quântica , Solo
13.
J Hazard Mater ; 381: 120871, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31374372

RESUMO

Clay-cellulose biocomposite (CCB) was synthesized in the present study. Spin and pressure-induced heating was applied to aggregate exfoliated clay tubules and cellulose using polyethylene glycol as an intermediate. The synthesized CCB was modified in the presence of NaOH at high temperature to obtain negative surface charge on the adsorbent. Physico-chemical properties of CCB were evaluated using different characterization techniques including Fourier transform infrared (FT-IR) and X-ray photoelectron (XPS) spectroscopy. The efficiency of the synthesized biocomposite for Pb(II) and Cd(II) removal from water was studied via laboratory scale experiments. The adsorption kinetics of Pb(II) and Cd(II) onto CCB was well described by the pseudo-second-order kinetic model. The maximum Langmuir adsorption capacity of CCB was found to be 389.78 and 115.96 mg g-1 for Pb(II) and Cd(II), respectively. Fixed-bed column studies were conducted for the adsorption system to compare the adsorption performance of CCB in continuous mode.


Assuntos
Cádmio/química , Celulose/química , Argila/química , Chumbo/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cinética
14.
Sci Total Environ ; 700: 135079, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706088

RESUMO

Numerous studies have examined the performance of mineral and biomass-based sorbents for metal removal under laboratory conditions, but few pilot-scale tests have been performed on possible water purification systems in which these sorbents can be used. This study addressed this issue by evaluating the suitability of selected sorbents for use in continuous-flow continuous stirred tank reactors (CSTR) followed by sedimentation in laboratory and in situ pilot-scale experiments. Acid (HCl)-modified peat (M-Peat), a commercially available mineral sorbent containing mainly magnesium (Mg) carbonates, Mg oxides and Mg silicates (Mineral-P) and a calcium-rich ground granular blast furnace slag (by-product of stainless steel production (Slag) were tested for treatment of metallurgical industry wastewater (laboratory, pilot). Overall, higher metal removal was achieved from samples with higher initial metal concentrations. M-Peat achieved good removal of Zn (50-70%) and Ni (30-50%) in laboratory and pilot experiments. However, the poor settling characteristics of M-Peat can restrict its application in systems where sedimentation is the solid-liquid separation process applied. Mineral-P showed good performance in removing 65-85% of Zn present in the water and it performed similarly in laboratory and pilot tests. However, low concentrations of As and Ni leached from Mineral-P in all tests. Slag achieved good performance in treatment of the industrial wastewater, removing 65-80% of Zn and 60-80% of Pb during pilot tests. However, low concentrations of Cr and Cu were leached from Slag in a few tests. As a by-product of the same (metallurgical) industry, ground granular blast furnace slag is an excellent candidate for reducing Zn concentrations from industrial wastewater flows.


Assuntos
Metais Pesados/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Adsorção , Sedimentos Geológicos , Resíduos Industriais , Metalurgia , Minerais , Águas Residuárias
15.
Materials (Basel) ; 12(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683513

RESUMO

This research focused on the investigation of layered double hydroxide (LDH)/halloysite materials' adsorption efficiency and mechanisms in reactions with aqueous As(V) and Cr(VI) in a broad pH range. The materials consisting of Mg/Al LDH and halloysite were synthesized using both direct precipitation and physical mixing methods. The XRD, FTIR, DTA, SEM and XPS methods were used to evaluate the quality of the obtained materials and get insight into removal mechanisms. The XRD, FTIR and DTA confirmed LDH formation and showed the dominating presence of intercalated carbonates in the LDH structure. The SEM of the materials revealed characteristic agglomerates of layered LDH particles deposited on halloysite tubular forms. The raw LDH phases showed high removal efficiency of both As(V) and Cr (VI) for initial pH in the range of 3-7. In the studied concentration range the materials containing 25 wt % of LDH exhibited a removal efficiency very similar to the raw LDH. In particular, the halloysite presence in the materials' mass had a positive effect in the reactions with As(V), which was removed by chemisorption. At a low pH the LDH component underwent partial dissolution, which lowered the adsorption efficiency. Apart from the anion exchange mechanism at a low pH the Cr(VI) was removed via formation of MgCrO4 with Mg (II) being released from the LDH structure. The XPS spectra for As(V) did not show changes in oxidation state in the reactions. In turn, a partial reduction of Cr(VI) to Cr(III) was observed, especially at a high pH. The use of materials composed of two different minerals is promising due to reduction of costs as well as prevention of adsorbent swelling. This opens the possibility of its use in dynamic adsorption flow through systems.

16.
Materials (Basel) ; 12(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340458

RESUMO

The sulfate removal from acid mine drainage (AMD) water (initial concentration: 5301 mg/L) was investigated by precipitation and/or adsorption using calcium hydroxide (Ca(OH)2) and synthetic layered double hydroxide (LDH) of the Mg/Al type. The exclusive use of LDH efficiently removed sulfates (64.2% reduction); however, alteration of its structure was observed due to low pH. The use of Ca(OH)2 in different doses calculated in relation to gypsum stoichiometry allowed to achieve an 86% removal of sulfates. Depending on the equilibrium pH, gypsum or ettringite were the main identified phases. The two-step removal, involving the use of Ca(OH)2 followed by LDH, was less efficient than the use of the Ca(OH)2/LDH mixture when the stoichiometric amount of Ca(OH)2 in relation to gypsum was applied. The application of mixture resulted in a fast pH increase, which prevented destruction of the LDH structure. Most importantly, the use of mixture significantly reduced the sludge volume and enhanced its settling velocity.

17.
Environ Res ; 175: 323-334, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150931

RESUMO

A novel bio-based anion exchanger was developed to remove sulphate from synthetic solutions and mine water. Different modification parameters such as chemical dosage and reaction time were tested when using a unique combination of branched polyethylenimine (PEI) and glycidyltrimethylammonium chloride (GTMAC) to produce an aminated biosorbent (termed PG-Peat). The novel and environment-friendly modification method was shown by FTIR and XPS analyses to be able to introduce quaternary ammonium and N-H groups into PG-Peat. The optimal modification conditions (PEI: 0.26 mmol/g, GTMAC: 0.0447 mol/g, reaction time: 18 h) resulted in the maximum sulphate uptake capacity (189.5 ±â€¯2.7 mg/g) with a partition coefficient value of 0.02 mg/g/µM under acidic conditions. At low pH, amine groups on the peat surface became cationized, thereby resulting in a higher sulphate removal capacity. Batch sorption tests using PG-Peat exhibited rapid sulphate sorption after only five minutes of contact. The sulphate uptake by PG-Peat was unaffected by the presence of varying chloride concentrations, while slightly lower uptake capacity was observed when different concentrations of nitrate were present. The biosorbent showed high recyclability, which was revealed in regeneration studies. Tests were performed involving real mine water, where PG-Peat showed its potential to be a highly efficient biosorbent for sulphate removal at low pH values, indicating its suitability for treating acidic mine waters.


Assuntos
Compostos de Epóxi/química , Polietilenoimina/química , Compostos de Amônio Quaternário/química , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Mineração , Solo , Purificação da Água
18.
Environ Pollut ; 252(Pt A): 281-288, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31158656

RESUMO

Biological sulfate removal is challenging in cold climates due to the slower metabolism of mesophilic bacteria; however, cold conditions also offer the possibility to isolate bacteria that have adapted to low temperatures. The present research focused on the cold acclimation and characterization of sulfate-reducing bacterial (SRB) consortia enriched from an Arctic sediment sample from northern Finland. Based on 16S rDNA analysis, the most common sulfate-reducing bacterium in all enriched consortia was Desulfobulbus, which belongs to the δ-Proteobacteria. The majority of the cultivated consortia were able to reduce sulfate at temperatures as low as 6 °C with succinic acid as a carbon source. The sulfate reduction rates at 6 °C varied from 13 to 42 mg/L/d. The cultivation medium used in this research was a Postgate medium supplemented with lactate, ethanol or succinic acid. The obtained consortia were able to grow with lactate and succinic acid but surprisingly not with ethanol. Enriched SRB consortia are useful for the biological treatment of sulfate-containing industrial wastewaters in cold conditions.


Assuntos
Aclimatação/fisiologia , Biodegradação Ambiental , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/isolamento & purificação , Bactérias Redutoras de Enxofre/metabolismo , Regiões Árticas , Carbono/metabolismo , Temperatura Baixa , Etanol/metabolismo , Finlândia , Ácido Láctico/metabolismo , Consórcios Microbianos , Mineração , Oxirredução , RNA Ribossômico 16S/genética , Ácido Succínico/metabolismo , Águas Residuárias/química
19.
J Hazard Mater ; 374: 372-381, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31028916

RESUMO

This study was aimed at examining the possible utilization of iron-rich groundwater treatment sludge in the synthesis of zerovalent iron (ZVI) as a conjugate with kaolin clay (Slu-KZVI), and its application for vanadium adsorption from aqueous solutions. Iron was extracted from the sludge using 1 M HCl and was used in ZVI synthesis by the sodium borohydride reduction method. The characteristics and performance of Slu-KZVI were compared to a kaolin modified with synthetic iron (FeCl3·6H2O) (Syn-KZVI). Adsorption results showed a competitive performance by both classes of KZVI, with Syn-KZVI slightly outperforming Slu-KZVI. X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy confirmed the formation of Fe0 on the core-shell structure of both modified adsorbents. In addition, the surface analysis of Slu-KZVI indicated the presence of P and Ca to a small extent, originating from the sludge. Both classes of sorbents performed better in solutions with acidic and neutral pH values (3-7). Surface complexation was thought to be the primary mechanism whereas simultaneous V(V) reduction and Fe oxidation (redox) reactions may also have taken place to some extent. A sorption test with groundwater confirmed that adsorbents were able to reduce vanadium to a very low concentration.

20.
J Environ Manage ; 236: 631-638, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772720

RESUMO

Discharge of metal-containing wastewater streams into the environment is an environmental concern because these pollutants do not degrade and tend to bioaccumulate. A number of laboratory-based investigations on the effectiveness of a wide range of filter materials for metal removal from diluted wastewater streams have been reported. However, only a few pilot or full-scale investigations have been conducted. Therefore, this study investigated the metal retention capabilities of mineral-based filter materials (commercially available mineral product (5-15 mm), recycled mineral material (2-4 mm) and slag by-product (2-4 and 4-16 mm)) when used in pilot-scale filter systems under continuous operation in a closed mining area in North Ostrobothnia, Finland, between June and October 2017. The influence of material particle size on system function and on metal retention efficiency was also evaluated. The results revealed that system performance was dependent on material composition and particle size (smaller particle size being more effective). The highest metal removal efficiencies (Zn, Ni, Cd, Cu and Pb) and largest amount of water treated (per volume of material applied) were achieved by an aluminium oxide-based recycled mineral material (2-4 mm). While smaller-grained materials performed better in terms of removal efficiency, the removal rates achieved by coarser-grained, commercially available mineral product (5-15 mm) were comparable to those achieved by small-grained slag (2-4 mm). Full-scale systems using the recycled mineral product (2-4 mm) would have an approximately two-fold longer material replacement time than systems using the slag (2-4 mm). Replacement time for the larger-grained materials tested could not be determined, due to problems with freezing. Overall, the recycled mineral material tested can be recommended for full-scale tests, especially when high zinc removal rates are required.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Finlândia , Minerais , Mineração , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA