Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278030

RESUMO

Most phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds ('metabolic generalism') or alternatively by distinct uses of diet-specific compounds ('multi-host metabolic specialism')? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, Drosophila suzukii, that developed on them. The direct comparison of metabolomes of diets and consumers enabled us to disentangle the metabolic fate of common and rarer dietary compounds. We showed that the consumption of biochemically dissimilar diets resulted in a canalized, generic response from generalist individuals, consistent with the metabolic generalism hypothesis. We also showed that many diet-specific metabolites, such as those related to the particular color, odor, or taste of diets, were not metabolized, and rather accumulated in consumer individuals, even when probably detrimental to fitness. As a result, while individuals were mostly similar across diets, the detection of their particular diet was straightforward. Our study thus supports the view that dietary generalism may emerge from a passive, opportunistic use of various resources, contrary to more widespread views of an active role of adaptation in this process. Such a passive stance towards dietary chemicals, probably costly in the short term, might favor the later evolution of new diet specializations.


Most insects that feed on green plants are specialists, meaning that they feed on just a narrow range of plant species. This reduces competition, especially if the host plant contains chemical deterrents that are toxic to other insects. But specialists cannot easily switch to feed on other plants, making them vulnerable to changes in the availability of the particular food type that they eat. Generalist insects, on the other hand, are able to consume a wide range of diets. This makes them more robust to changes in food availability, but it is unclear how these insects deal with the wider range of chemical compositions of their food. Do they convert food into energy using the same chemical process, or metabolism, for all the different things they eat? Or do generalists have a specific metabolic pathway for each food type? To answer this question, Olazcuaga, Baltenweck et al. studied the metabolism of a generalist fruit fly species. The team compared four types of fruit (blackcurrant, cherry, cranberry and strawberry) and isolated separate groups of flies so that they each ate only one type of fruit. By comparing the chemical composition of the flies with that of the fruit they ate, they were able to work out how each fruit type was metabolised. They found that the flies converted food into energy using the same process regardless of the type of fruit they ate. This lack of a specialist metabolic pathway for each fruit type meant that some chemicals were not metabolised and accumulated in the fly's body instead. This build-up of unprocessed chemicals is likely to be harmful to the fly. The results of Olazcuaga, Baltenweck et al. suggest that generalist insects do not actively adapt their metabolism to new food types. It's more likely that they try different types of food as the opportunity arises, regardless of the fact that some of the food will not be converted into energy and may harm them long term. These findings are important because they give us an insight into how the chemistry of a plant can shape the physiology of the organisms that consume it, and vice-versa. These insights are a crucial step in developing sustainable agriculture practices that must consider tackle how plants are pollinated, how plant seeds are dispersed and what type of pest control to use.


Assuntos
Dieta , Frutas , Animais , Filogenia , Insetos , Plantas
2.
Ecol Evol ; 13(1): e9741, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694552

RESUMO

Lower plant resistance to herbivores following domestication has been suggested as the main cause for higher feeding damage in crops than in wild progenitors. While herbivore compensatory feeding has also been proposed as a possible mechanism for raised damage in crops with low nutritional quality, predictions regarding the effects of plant domestication on nutritional quality for herbivores remain unclear. In particular, data on primary metabolites, even major macronutrients, measured in the organs consumed by herbivores, are scarce. In this study, we used a collection of 10 accessions of wild ancestors and 10 accessions of modern progenies of Triticum turgidum to examine whether feeding damage and selectivity by nymphs of Locusta migratoria primarily depended on five leaf traits related to structural resistance or nutrient profiles. Our results unexpectedly showed that locusts favored wild ancestors over domesticated accessions and that leaf toughness and nitrogen and soluble protein contents increased with the domestication process. Furthermore, the quantitative relationship between soluble protein and digestible carbohydrates was found to poorly meet the specific requirements of the herbivore, in all wheat accessions, both wild and modern. The increase in leaf structural resistance to herbivores in domesticated tetraploid wheat accessions suggested that resource allocation trade-offs between growth and herbivory resistance may have been disrupted by domestication in the vegetative organs of this species. Since domestication did not result in a loss of nutritional quality in the leaves of the tetraploid wheat, our results rather provides evidence for a role of the content of plants in nonnutritive nitrogenous secondary compounds, possibly deterrent or toxic, at least for grasshopper herbivores.

3.
J Insect Physiol ; 145: 104467, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528090

RESUMO

Phenotypic plasticity in body size is a product of modification of the developmental pathway. Although hatchlings of the desert locust, Schistocerca gregaria, show egg size-dependent plasticity in body size, it remains unclear how embryogenesis during egg development regulates final embryonic body size. To determine the developmental pathway causing body size variation at hatching, we examined egg and embryonic development at the early, middle, and late egg developmental stages in S. gregaria by comparing small and large eggs. Crowd-reared females produced larger eggs than isolated-reared females. The daily egg developmental rate was similar between small and large eggs: eggs dramatically absorbed external water after days 3 to 7 and nearly doubled the initial egg weight at the late stage of day 12. Morphological measurements of eggs and embryos at different days after oviposition revealed that large eggs were longer than small eggs throughout developmental stages. However, embryo length was similar between small and large eggs at the early stage (anatrepsis). Embryos begin to absorb yolk into their bodies after blastokinesis. The size of large-egg embryos increased significantly from the middle stage (katatrepsis) due to absorption of more yolk than small eggs. Egg length and embryo length were conspicuously larger in large eggs than in small eggs on day 12 of late katatrepsis. These results suggest that egg size did not influence the egg developmental rate and initial embryo size. Large eggs had more yolk and space, resulting in larger final embryos than small eggs. The amount of yolk and size of eggshells during katatrepsis could play a key role in determining hatchling body size in S. gregaria.


Assuntos
Gafanhotos , Feminino , Animais , Gafanhotos/fisiologia , Óvulo , Oviposição , Aglomeração , Tamanho Corporal , Desenvolvimento Embrionário
4.
J Insect Physiol ; 143: 104454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36343666

RESUMO

Collective motion is one of the most impressive common features of gregarious locusts: once formed, bands and swarms get moving for long distances. It was shown that visual perception of neighbours plays a key role in maintaining marching behaviour at a local scale. But at a larger scale, mechanisms underlying band cohesion are less understood. It was shown in several field studies that individuals separated from the band were able to get back to the group, even after being separated since a night. In this context, faeces' odours could be a possible indicator of the recent passage of a group. In this study, we tested if nymphs are attracted by faeces' odours and if this effect is modulated by the age of the faeces. To this end, we conducted individual olfactometric behavioural assays of 3rd instar hoppers of desert locust, Schistocerca gregaria, exposed to odours of 1 h-old and 24 h-old faeces. We also used Gas Chromatography-Mass Spectrometry (GC-MS) to identify odours' volatile organic compounds from faeces. The results of behavioural assays indicated a strong attractive effect of faeces, with no preference for one of the two faecal age classes. Nymphs spent significantly more time in the side of the olfactometer where the faeces' odours came from, and 72.7% of tested individuals chose this side first. We filtered and annotated 11 volatile organic compounds present in both fresh and old faeces in GC-MS analyses, including guaiacol and phenol, which are known to cause an aggregative effect on desert locusts. As the attractive effect lasted over 24 h, band's faeces could still have an attractive effect when individuals are separated from the band since one day. In this situation, latecomers individuals would be able to get back to the group by following the traces of their predecessors.


Assuntos
Gafanhotos , Compostos Orgânicos Voláteis , Animais , Odorantes , Ninfa , Fezes/química
5.
J Evol Biol ; 34(8): 1225-1240, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097795

RESUMO

The process of local adaptation involves differential changes in fitness over time across different environments. Although experimental evolution studies have extensively tested for patterns of local adaptation at a single time point, there is relatively little research that examines fitness more than once during the time course of adaptation. We allowed replicate populations of the fruit pest Drosophila suzukii to evolve in one of eight different fruit media. After five generations, populations with the highest initial levels of maladaptation had mostly gone extinct, whereas experimental populations evolving on cherry, strawberry and cranberry media had survived. We measured the fitness of each surviving population in each of the three fruit media after five and after 26 generations of evolution. After five generations, adaptation to each medium was associated with increased fitness in the two other media. This was also true after 26 generations, except when populations that evolved on cranberry medium developed on cherry medium. These results suggest that, in the theoretical framework of a fitness landscape, the fitness optima of cherry and cranberry media are the furthest apart. Our results show that studying how fitness changes across several environments and across multiple generations provides insights into the dynamics of local adaptation that would not be evident if fitness were analysed at a single point in time. By allowing a qualitative mapping of an experimental fitness landscape, our approach will improve our understanding of the ecological factors that drive the evolution of local adaptation in D. suzukii.


Assuntos
Adaptação Fisiológica , Drosophila , Aclimatação , Animais , Meios de Cultura , Drosophila/genética
6.
Parasite ; 28: 12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33620310

RESUMO

Orthoptera are infected by about 60 species of gregarines assigned to the genus Gregarina Dufour, 1828. Among these species, Gregarina garnhami Canning, 1956 from Schistocerca gregaria (Forsskål, 1775) was considered by Lipa et al. in 1996 to be synonymous with Gregarina acridiorum (Léger 1893), a parasite of several orthopteran species including Locusta migratoria (Linné, 1758). Here, a morphological study and molecular analyses of the SSU rDNA marker demonstrate that specimens of S. gregaria and specimens of L. migratoria are infected by two distinct Gregarina species, G. garnhami and G. acridiorum, respectively. Validation of the species confirms that molecular analyses provide useful taxonomical information. Phenotypic plasticity was clearly observed in the case of G. garnhami: the morphology of its trophozoites, gamonts and syzygies varied according to the geographical location of S. gregaria and the subspecies infected.


TITLE: La taxonomie intégrative confirme que Gregarina garnhami et G. acridiorum (Apicomplexa, Gregarinidae), parasites de Schistocerca gregaria et Locusta migratoria (Insecta, Orthoptera), sont des espèces distinctes. ABSTRACT: Les orthoptères sont parasités par environ soixante espèces de grégarines affiliées au genre Gregarina Dufour, 1828. Parmi ces espèces Gregarina garnhami Canning, 1956 décrite chez Schistocerca gregaria (Forskål, 1775), a été mise en synonymie par Lipa et al. en 1996 avec Gregarina acridiorum (Léger 1893), parasite de plusieurs espèces d'orthoptères dont Locusta migratoria (Linné, 1758). Ici, une étude morphologique et des analyses moléculaires du marqueur SSU rDNA démontrent que les spécimens de S. gregaria et ceux de L. migratoria sont infectés par 2 espèces distinctes de grégarines, Gregarina garnhami et Gregarina acridiorum, respectivement. La validation de ces espèces confirme l'importance des informations fournies par les analyses moléculaires dans les études taxonomiques. Une plasticité phénotypique a été clairement observée dans le cas de G. garnhami : la morphologie de ses trophozoïtes, gamontes et syzygies varie selon la localisation géographique et la sous-espèce de S. gregaria infectée.


Assuntos
Apicomplexa/classificação , Especiação Genética , Locusta migratoria/parasitologia , Animais , DNA Ribossômico/genética
7.
Pathogens ; 9(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993044

RESUMO

In Europe, Puumala virus (PUUV) is responsible for nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). Despite the presence of its reservoir, the bank vole, on most of French territory, the geographic distribution of NE cases is heterogeneous and NE endemic and non-endemic areas have been reported. In this study we analyzed whether bank vole-PUUV interactions could partly shape these epidemiological differences. We performed crossed-experimental infections using wild bank voles from French endemic (Ardennes) and non-endemic (Loiret) areas and two French PUUV strains isolated from these areas. The serological response and dynamics of PUUV infection were compared between the four cross-infection combinations. Due to logistical constraints, this study was based on a small number of animals. Based on this experimental design, we saw a stronger serological response and presence of PUUV in excretory organs (bladder) in bank voles infected with the PUUV endemic strain. Moreover, the within-host viral diversity in excretory organs seemed to be higher than in other non-excretory organs for the NE endemic cross-infection but not for the NE non-endemic cross-infection. Despite the small number of rodents included, our results showed that genetically different PUUV strains and in a lesser extent their interaction with sympatric bank voles, could affect virus replication and diversity. This could impact PUUV excretion/transmission between rodents and to humans and in turn at least partly shape NE epidemiology in France.

8.
Pathogens ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882953

RESUMO

Puumala virus (PUUV) in Europe causes nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). The incidence of NE is highly heterogeneous spatially, whereas the geographic distribution of the wild reservoir of PUUV, the bank vole, is essentially homogeneous. Our understanding of the processes driving this heterogeneity remains incomplete due to gaps in knowledge. Little is known about the current distribution and genetic variation of PUUV in the areas outside the well-identified zones of NE endemicity. We trapped bank voles in four forests in French regions in which NE is considered non-endemic, but sporadic NE cases have been reported recently. We tested bank voles for anti-PUUV IgG and characterized the S segment sequences of PUUV from seropositive animals. Phylogenetic analyses revealed specific amino-acid signatures and genetic differences between PUUV circulating in non-endemic and nearby NE-endemic areas. We also showed, in temporal surveys, that the amino-acid sequences of PUUV had undergone fewer recent changes in areas non-endemic for NE than in endemic areas. The evolutionary history of the current French PUUV clusters was investigated by phylogeographic approaches, and the results were considered in the context of the history of French forests. Our findings highlight the need to monitor the circulation and genetics of PUUV in a larger array of bank vole populations, to improve our understanding of the risk of NE.

9.
Environ Entomol ; 48(4): 867-881, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31157861

RESUMO

A better understanding of the factors affecting host plant use by spotted-wing drosophila (Drosophila suzukii) could aid in the development of efficient management tools and practices to control this pest. Here, proxies of both preference (maternal oviposition behavior) and performance (adult emergence) were evaluated for 12 different fruits in the form of purees. The effect of the chemical composition of the fruits on preference and performance traits was then estimated. We synthesized the literature to interpret our findings in the light of previous studies that measured oviposition preference and larval performance of D. suzukii. We show that fruit identity influences different parts of the life cycle, including oviposition preference under both choice and no-choice conditions, emergence rate, development time, and number of emerging adults. Blackcurrant was always among the most preferred fruit we used, while grape and tomato were the least preferred fruits. Larvae performed better in cranberry, raspberry, strawberry, and cherry than in the other fruits tested. We found that fruit chemical compounds can explain part of the effect of fruit on D. suzukii traits. In particular, oviposition preference under choice conditions was strongly influenced by fruit phosphorus content. In general, the consensus across studies is that raspberry, blackberry, and strawberry are among the best hosts while blackcurrant, grape and rose hips are poor hosts. Our results generally confirm this view but also suggest that oviposition preferences do not necessarily match larval performances. We discuss opportunities to use our results to develop new approaches for pest management.


Assuntos
Fragaria , Oviposição , Animais , Drosophila , Feminino , Frutas , Larva
10.
Pest Manag Sci ; 67(11): 1420-3, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21520483

RESUMO

BACKGROUND: Termites are degradation agents that inflict severe damage on wood. Some long-lasting Amazonian trees can resist these insects by producing toxic secondary metabolites. These metabolites could potentially replace synthetic termiticidal products which are becoming more restricted to use. RESULTS: Sextonia rubra is resistant to termite-induced degradation. It has been demonstrated that this species naturally produces an ethyl-acetate-soluble termiticidal metabolite, rubrynolide, to protect its wood. Assays in the presence of tropical and invasive termites established that both rubrynolide and crude ethyl acetate extract from S. rubra wood can be used as a treatment for the protection of sensitive woods against termites. CONCLUSION: Rubrynolide and S. rubra extract are promising candidates for the replacement of synthetic termiticides.


Assuntos
Acetais/toxicidade , Alcenos/toxicidade , Inseticidas/toxicidade , Isópteros/efeitos dos fármacos , Lauraceae/química , Acetais/química , Acetais/isolamento & purificação , Alcenos/química , Alcenos/isolamento & purificação , Animais , Guiana Francesa , Inseticidas/química , Inseticidas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Madeira/química , Madeira/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA