Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Biotechnol ; 66(2): 354-364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37162721

RESUMO

This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10-12 mmol cell/h) in SF and for glutamine (30.8 × 10-12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10-10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.


Assuntos
Compostos de Amônio , Vírus da Raiva , Raiva , Animais , Células Sf9 , Vírus da Raiva/genética , Glutamina , Baculoviridae/genética , Proteínas Recombinantes/genética , Meios de Cultura Livres de Soro , Ácido Glutâmico , Lactatos , Glucose , Spodoptera
2.
Biotechnol Lett ; 45(7): 823-846, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171697

RESUMO

Prior to clinical use, extensive in vitro proliferation of human adipose-derived stem cells (ASCs) is required. Among the current options, spinner-type stirred flasks, which use microcarriers to increase the yield of adherent cells, are recommended. Here, we propose a methodology for ASCs proliferation through cell suspension culture using Cultispher-S® microcarriers (MC) under agitation in a spinner flask, with the aim of establishing a system that reconciles the efficiency of cell yield with high viability of the culture during two distinct phases: seeding and proliferation. The results showed that cell adhesion was potentiated under intermittent stirring at 70 rpm in the presence of 10% FBS for an initial cell concentration of 2.4 × 104 cells/mL in the initial 24 h of cultivation. In the proliferation phase, kinetic analysis showed that cell growth was higher under continuous agitation at 50 rpm with a culture medium renewal regime of 50% every 72 h, which was sufficient to maintain the culture at optimal levels of nutrients and metabolites for up to nine days of cultivation, representing an 11.1-fold increase and a maximum cell productivity of 422 cells/mL/h (1.0 × 105 viable cells/mL). ASCs maintained the immunophenotypic characteristics and mesodermal differentiation potential of both cell lines from different donors. The established protocol represents a more efficient and cost-effective method to obtain a high proliferation rate of ASCs in a microcarrier-based system, which is necessary for large-scale use in cell therapy, highlighting that the manipulation of critical parameters optimizes the ASCs production process.


Assuntos
Células-Tronco Mesenquimais , Humanos , Cinética , Técnicas de Cultura de Células/métodos , Proliferação de Células , Meios de Cultura , Diferenciação Celular , Células Cultivadas
3.
J Biotechnol ; 363: 19-31, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36587847

RESUMO

This work aimed to quantify growth and biochemical parameters (viable cell density, Xv; cell viability, CV; glucose, lactate, glutamine, glutamate, ammonium, and potassium concentrations) in upstream stages to obtain rabies virus-like particles (rabies VLP) from insect cell-baculovirus system using on-line and off-line Raman spectra to calibrate global models with minimal experimental data. Five cultivations in bioreactor were performed. The first one comprised the growth of uninfected Spodoptera frugiperda (Sf9) cells, the second and third runs to obtain recombinant baculovirus (rBV) bearing Rabies G glycoprotein and matrix protein, respectively. The fourth one involved the generation of rabies VLP from rBVs and the last one was a repetition of the third one with cell inoculum infected by rBV. The spectra were acquired through a Raman spectrometer with a 785-nm laser source. The fitted Partial Least Square models for nutrients and metabolites were comparable with those previously reported for mammalian cell lines (Relative error < 15 %). However, the use of this chemometrics approach for Xv and CV was not as accurate as it was for other parameters. The findings from this work established the basis for bioprocess Raman spectroscopical monitoring using insect cells for VLP manufacturing, which are gaining ground in the pharmaceutical industry.


Assuntos
Vírus da Raiva , Raiva , Animais , Vírus da Raiva/genética , Análise Espectral Raman , Linhagem Celular , Reatores Biológicos , Baculoviridae , Proteínas Recombinantes , Insetos , Spodoptera , Mamíferos
4.
Mol Biotechnol ; 65(6): 970-982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36396754

RESUMO

This work aimed to describe the dynamics of the Sf9 insect cells death and primary metabolism when this host is infected simultaneously by two recombinant baculoviruses (BV) expressing rabies glycoprotein (BVG) and matrix protein (BVM) genes to produce rabies virus-like particles (VLP) at different multiplicities of infection (MOI). Schott flasks essays covering a wide range of MOI for both BV were performed. Viable cell density, cell viability, glucose, glutamine, glutamate, lactate, ammonium, and rabies proteins concentrations were monitored over the infection phase. The expression of both recombinant proteins was not limited by glucose, glutamine, and glutamate in a broad MOI (pfu/cell) range of BVG (0.15-12.5) and BVM (0.1-5.0) using SF900 III serum free culture medium. Death phase initiation and the specific death rate depend on BV MOI. The wave pattern of nutrient/metabolite profiles throughout the viral infection phase is related to the baculovirus lytic cycle. The optimal MOIs ratio between BVG (2.5-4.5) and BVM (1.0-3.0) for maximum protein expression was defined. The produced rabies VLP sizes are close to 78 nm. In general, these work outputs bring a better understanding of the metabolic performance of Sf9 cells when infected by BV for producing VLP, and specifically, for progressing in a rabies VLP vaccine development.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Humanos , Baculoviridae/genética , Baculoviridae/metabolismo , Células Sf9 , Linhagem Celular , Vírus da Raiva/genética , Glutamina/metabolismo , Glutamatos/metabolismo , Glucose/metabolismo
5.
Vaccines (Basel) ; 11(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36679884

RESUMO

This work aimed to assess, following upstream optimization in Schott flasks, the scalability from this culture platform to a stirred-tank bioreactor in order to yield rabies-recombinant baculovirus, bearing genes of G (BVG) and M (BVM) proteins, and to obtain rabies virus-like particles (VLP) from them, using Sf9 insect cells as a host. Equivalent assays in Schott flasks and a bioreactor were performed to compare both systems and a multivariate statistical approach was also carried out to maximize VLP production as a function of BVG and BVM's multiplicity of infection (MOI) and harvest time (HT). Viable cell density, cell viability, virus titer, BVG and BVM quantification by dot-blot, and BVG quantification by Enzyme-Linked Immunosorbent Assay (ELISA) were monitored throughout the assays. Furthermore, transmission electron microscopy was used to characterize rabies VLP. The optimal combination for maximum VLP expression was BVG and BVM MOI of 2.3 pfu/cell and 5.1 pfu/cell, respectively, and 108 h of harvest time. The current study confirmed that the utilization of Schott flasks and a benchtop bioreactor under the conditions applied herein are equivalent regarding the cell death kinetics corresponding to the recombinant baculovirus infection process in Sf9 cells. According to the results, the hydrodynamic and chemical differences in both systems seem to greatly affect the virus and VLP integrity after release.

6.
Cytotechnology ; 68(1): 95-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24942228

RESUMO

Mammalian cells are the most frequently used hosts for biopharmaceutical proteins manufacturing. Inoculum quality is a key element for establishing an efficient bioconversion process. The main objective in inoculation expansion process is to generate large volume of viable cells in the shortest time. The aim of this paper was to optimize the inoculum preparation stage of baby hamster kidney (BHK)-21 cells for suspension cultures in benchtop bioreactors, by means of a combination of static and agitated culture systems. Critical parameters for static (liquid column height: 5, 10, 15 mm) and agitated (working volume: 35, 50, 65 mL, inoculum volume percentage: 10, 30 % and agitation speed: 25, 60 rpm) cultures were study in T-flask and spinner flask, respectively. The optimal liquid column height was 5 mm for static culture. The maximum viable cell concentration in spinner flask cultures was reached with 50 mL working volume and the inoculum volume percentage was not significant in the range under study (10-30 %) at 25 rpm agitation. Agitation speed at 60 rpm did not change the main kinetic parameters with respect to those observed for 25 rpm. These results allowed for a schedule to produce more than 4 × 10(9) BHK-21 cells from 4 × 10(6) cells in 13 day with 1,051 mL culture medium.

7.
Biotechnol Lett ; 37(6): 1153-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25700821

RESUMO

OBJECTIVE: To assess the expression of rabies virus G-glycoprotein (RVGP) expression using Semliki Forest virus as a vector in combination with BHK-21 cells cultured in suspension. RESULTS: A multilevel factorial design was used to quantify effects of temperature (33-37 °C), fresh medium addition after the viral adsorption step (100-200 % with respect to the initial cell suspension volume before infection) and harvest time (8-40 h) on RVGP production. Experimental runs were performed in 24-well cell culture plates at a multiplicity of infection (MOI) of 16. An additional experiment in spinner-flask was performed at MOI of 9, using the optimal conditions determined in cell culture plates. Values for temperature, fresh medium addition and harvest time of 33 °C, 100 % and 16 h, respectively, ensured the optimal RVGP production in culture plates. The volumetric yield (239 ng ml(-1)) in these conditions was higher than that reported previously for adherent cell culture. In spinner-flasks, the volumetric yield was improved (559 ng ml(-1)). CONCLUSION: These results establish the basis for designing bioprocess to produce RVGP.


Assuntos
Antígenos Virais/biossíntese , Reatores Biológicos , Células Epiteliais/metabolismo , Expressão Gênica , Glicoproteínas/biossíntese , Proteínas do Envelope Viral/biossíntese , Animais , Antígenos Virais/genética , Linhagem Celular , Cricetinae , Meios de Cultura/química , Vetores Genéticos , Glicoproteínas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Vírus da Floresta de Semliki/genética , Temperatura , Fatores de Tempo , Proteínas do Envelope Viral/genética
8.
Bioprocess Biosyst Eng ; 38(6): 1045-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25552348

RESUMO

Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.


Assuntos
Produtos Biológicos , Reatores Biológicos , Redes Neurais de Computação , Espectrofotometria Ultravioleta/métodos , Animais , Linhagem Celular , Cricetinae , Meios de Cultura , Concentração de Íons de Hidrogênio
9.
Biotechnol Prog ; 31(2): 532-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25627917

RESUMO

This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.


Assuntos
Biotecnologia/métodos , Redes Neurais de Computação , Cultura de Vírus/métodos , Replicação Viral/fisiologia , Animais , Linhagem Celular , Cricetinae , Vírus da Raiva/isolamento & purificação , Vírus da Raiva/fisiologia , Projetos de Pesquisa
10.
Biotechnol Prog ; 30(1): 241-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24665480

RESUMO

Monitoring mammalian cell culture with UV­vis spectroscopy has not been widely explored. The aim of this work was to calibrate Partial Least Squares (PLS) models from off-line UV­vis spectral data in order to predict some nutrients and metabolites, as well as viable cell concentrations for mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Spectra of samples taken from batches performed at different dissolved oxygen concentrations (10, 30, 50, and 70% air saturation), in two bioreactor configurations and with two strategies to control pH were used to calibrate and validate PLS models. Glutamine, glutamate, glucose, and lactate concentrations were suitably predicted by means of this strategy. Especially for glutamine and glucose concentrations, the prediction error averages were lower than 0.5060.10 mM and 2.2160.16 mM, respectively. These values are comparable with those previously reported using near infrared and Raman spectroscopy in conjunction with PLS. However, viable cell concentration models need to be improved. The present work allows for UV­vis at-line sensor development, decrease cost related to nutrients and metabolite quantifications and establishment of fed-batch feeding schemes.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Proliferação de Células , Espectrofotometria Ultravioleta/métodos , Animais , Calibragem , Linhagem Celular , Meios de Cultura/química , Meios de Cultura/metabolismo , Análise dos Mínimos Quadrados , Análise Multivariada , Oxigênio/análise , Oxigênio/metabolismo , Bicarbonato de Sódio/análise , Bicarbonato de Sódio/metabolismo
11.
Cytotechnology ; 66(4): 605-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23846480

RESUMO

This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 10(6) cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation-aeration systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA