Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Commun Earth Environ ; 5(1): 480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239114

RESUMO

Although internal seiches are ubiquitous in large, deep lakes, little is known about the effect of higher vertical-mode seiches on deepwater dynamics. Here, by combining entire summer season current and temperature observations and 3D numerical modeling, we demonstrate that previously undetected vertical mode-two and mode-three Poincaré waves in 309-meter deep Lake Geneva (Switzerland/France) generate bottom-boundary layer currents up to 4 cm s-1. Poincaré wave amphidromic patterns revealed three strong cells excited simultaneously. Weak hypolimnetic stratification (N 2 ≈ 10-6 s -2), typical of deep lakes, significantly modified the wave structure by shifting the lower vertical node in the lake's center from ~75-meter depth (without stratification) to ~150-meter depth (with stratification). This shift induces shear in the middle of the hypolimnion and strengthens bottom currents, with important implications for hypolimnetic mixing and sediment-water exchange. Our findings demonstrate that classical concepts based on constant temperature layers cannot correctly characterize higher vertical-mode Poincaré seiches in deep lakes.

2.
PLoS One ; 14(2): e0210562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763327

RESUMO

Two complementary measurement systems-built upon an autonomous floating craft and a tethered balloon-for lake research and monitoring are presented. The autonomous vehicle was assembled on a catamaran for stability, and is capable of handling a variety of instrumentation for in situ and near-surface measurements. The catamaran hulls, each equipped with a small electric motor, support rigid decks for arranging equipment. An electric generator provides full autonomy for about 8 h. The modular power supply and instrumentation data management systems are housed in two boxes, which enable rapid setup. Due to legal restrictions in Switzerland (where the craft is routinely used), the platform must be observed from an accompanying boat while in operation. Nevertheless, the control system permits fully autonomous operation, with motion controlled by speed settings and waypoints, as well as obstacle detection. On-board instrumentation is connected to a central hub for data storage, with real-time monitoring of measurements from the accompanying boat. Measurements from the floating platform are complemented by mesoscale imaging from an instrument package attached to a He-filled balloon. The aerial package records thermal and RGB imagery, and transmits it in real-time to a ground station. The balloon can be tethered to the autonomous catamaran or to the accompanying boat. Missions can be modified according to imagery and/or catamaran measurements. Illustrative results showing the surface thermal variations of Lake Geneva demonstrate the versatility of the combined floating platform/balloon imagery system setup for limnological investigations.


Assuntos
Aeronaves , Monitoramento Ambiental , Limnologia , Navios , Aeronaves/economia , Aeronaves/instrumentação , Monitoramento Ambiental/economia , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Lagos/análise , Limnologia/economia , Limnologia/instrumentação , Navios/economia , Navios/instrumentação , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA