Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 12(5): e0122321, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579573

RESUMO

Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (B[a]P) are among the most abundant environmental pollutants, resulting in continuous exposure of human skin and its microbiota. However, effects of the latter on B[a]P toxicity, absorption, metabolism, and distribution in humans remain unclear. Here, we demonstrate that the skin microbiota does metabolize B[a]P on and in human skin in situ, using a recently developed commensal skin model. In this model, microbial metabolism leads to high concentrations of known microbial B[a]P metabolites on the surface as well as in the epidermal layers. In contrast to what was observed for uncolonized skin, B[a]P and its metabolites were subject to altered rates of skin penetration and diffusion, resulting in up to 58% reduction of metabolites recovered from basal culture medium. The results indicate the reason for this altered behavior to be a microbially induced strengthening of the epidermal barrier. Concomitantly, colonized models showed decreased formation and penetration of the ultimate carcinogen B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), leading, in consequence, to fewer BPDE-DNA adducts being formed. Befittingly, transcript and expression levels of key proteins for repairing environmentally induced DNA damage such as xeroderma pigmentosum complementation group C (XPC) were also found to be reduced in the commensal models, as was expression of B[a]P-associated cytochrome P450-dependent monooxygenases (CYPs). The results show that the microbiome can have significant effects on the toxicology of external chemical impacts. The respective effects rely on a complex interplay between microbial and host metabolism and microbe-host interactions, all of which cannot be adequately assessed using single-system studies. IMPORTANCE Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. This can be due to microbial biotransformation of compounds, interaction between the microbiota and the host's endogenous detoxification enzymes, or altered xenobiotic bioavailability. However, there are hardly any studies addressing the complex interplay of such interactions in situ and less so in human test systems. Using a recently developed microbially competent three-dimensional (3D) skin model, we show here for the first time how commensal influence on skin physiology and gene transcription paradoxically modulates PAH toxicity.


Assuntos
Benzo(a)pireno/metabolismo , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Pele/efeitos dos fármacos , Pele/microbiologia , Simbiose/efeitos dos fármacos , Benzo(a)pireno/farmacologia , Técnicas de Cultura de Células , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Técnicas In Vitro , Microbiota/genética , Pele/metabolismo , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Simbiose/fisiologia
2.
Arch Toxicol ; 94(10): 3487-3502, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681188

RESUMO

The skin`s microbiome is predominantly commensalic, harbouring a metabolic potential far exceeding that of its host. While there is clear evidence that bacteria-dependent metabolism of pollutants modulates the toxicity for the host there is still a lack of models for investigating causality of microbiome-associated pathophysiology or toxicity. We now report on a biologically characterised microbial-skin tissue co-culture that allows studying microbe-host interactions for extended periods of time in situ. The system is based on a commercially available 3D skin model. In a proof-of-concept, this model was colonised with single and mixed cultures of two selected skin commensals. Two different methods were used to quantify the bacteria on the surface of the skin models. While Micrococcus luteus established a stable microbial-skin tissue co-culture, Pseudomonas oleovorans maintained slow continuous growth over the 8-day cultivation period. A detailed skin transcriptome analysis showed bacterial colonisation leading to up to 3318 significant changes. Additionally, FACS, ELISA and Western blot analyses were carried out to analyse secretion of cytokines and growth factors. Changes found in colonised skin varied depending on the bacterial species used and comprised immunomodulatory functions, such as secretion of IL-1α/ß, Il-6, antimicrobial peptides and increased gene transcription of IL-10 and TLR2. The colonisation also influenced the secretion of growth factors such as VFGFA and FGF2. Notably, many of these changes have already previously been associated with the presence of skin commensals. Concomitantly, the model gained first insights on the microbiome's influence on skin xenobiotic metabolism (i.e., CYP1A1, CYP1B1 and CYP2D6) and olfactory receptor expression. The system provides urgently needed experimental access for assessing the toxicological impact of microbiome-associated xenobiotic metabolism in situ.


Assuntos
Interações entre Hospedeiro e Microrganismos , Micrococcus luteus/crescimento & desenvolvimento , Pseudomonas oleovorans/crescimento & desenvolvimento , Pele/microbiologia , Anti-Infecciosos/metabolismo , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Pele/metabolismo , Simbiose , Técnicas de Cultura de Tecidos
3.
Arch Toxicol ; 91(6): 2331-2341, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28378121

RESUMO

The ubiquitous occurrence of polycyclic aromatic hydrocarbons (PAHs) leads to constant human exposure at low levels. Toxicologically relevant are especially the high-molecular weight substances due to their (pro-)carcinogenic potential. Following ingestion or uptake, the eukaryotic phase I metabolism often activates these substances to become potent DNA binders, and unsurprisingly metabolism and DNA-adduct formation of model substances such as benzo[a]pyrene (B[a]P) are well studied. However, apart from being subjected to eukaryotic transformations PAHs are also carbon and energy sources for the myriads of commensal microbes inhabiting man's every surface. Yet, we know little about the microbiome's PAH-metabolism capacity and its potentially adverse impact on the human host. This study now shows that readily isolable skin commensals transform B[a]P into a range of highly cyto- and genotoxic metabolites that are excreted in toxicologically relevant concentrations during growth. The respective bacterial supernatants contain a mixture of established eukaryotic as well as hitherto unknown prokaryotic metabolites, the combination of which leads to an increased toxicity. Altogether we show that PAH metabolism of the microbiome has to be considered a potential hazard.


Assuntos
Bacillus licheniformis/metabolismo , Dano ao DNA , Queratinócitos/efeitos dos fármacos , Micrococcus luteus/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pele/efeitos dos fármacos , Bacillus licheniformis/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Desintoxicação Metabólica Fase I , Microbiota , Micrococcus luteus/genética , Pele/metabolismo , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA