Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Sci Total Environ ; 931: 172710, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670375

RESUMO

Sea turtles, with their global distribution and complex life cycle, often accumulate pollutants such as metals and metalloids due to their extended lifespan and feeding habits. However, there are limited studies exploring the impact of metal pollution on the reproductive health of female sea turtles, specifically focusing on the quality of their eggs, which has significant implications for the future generations of these charismatic animals. São Tomé Island, a crucial nesting and feeding habitat for green sea turtles, underscores the urgent need for comprehensive research in this ecologically significant area. This study aimed to investigate whether metals and metalloids in the blood of nesting female green sea turtles induce genotoxic effects in their erythrocytes and affect their egg morphometric characteristics and the composition of related compartments. Additionally, this study aimed to evaluate whether the quality of energetic reserves for embryo development (fatty acids in yolk's polar and neutral lipids) is influenced by the contamination status of their predecessors. Results revealed correlations between Cu and Hg levels and increased "lobed" erythrocytes, while As and Cu negatively influenced shell thickness. In terms of energy reserves, both polar and neutral lipid fractions contained primarily saturated and monounsaturated fatty acids, with prevalent 18:1n-9, 18:0, 16:0, 14:0, and 12:0 fatty acids in yolk samples. The yolk polar fraction was more susceptible to contaminant levels in female sea turtles, showing consistent negative correlations between pollution load index and essential n3 fatty acids, including linolenic, eicosatrienoic, eicosapentaenoic, and docosapentaenoic acids, crucial for embryonic development. These metals accumulation, coupled with the reduced availability of these key fatty acids, may disrupt the eicosanoid and other important pathways, affecting reproductive development. This study reveals a negative correlation between metal contamination in female sea turtles' blood and egg lipid reserves, raising concerns about embryonic development and the species' future generations.


Assuntos
Desenvolvimento Embrionário , Óvulo , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/embriologia , Feminino , Poluentes Químicos da Água/análise , Desenvolvimento Embrionário/efeitos dos fármacos , Óvulo/química , Monitoramento Ambiental , Metais
2.
Environ Pollut ; 341: 122989, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984477

RESUMO

Ocean's characteristics are rapidly changing, modifying environmental suitability for early life stages of fish. We assessed whether the chronic effects of warming (24 °C) and hypoxia (<2-2.5 mg L-1) will be amplified by the combination of these stressors on mortality, growth, behaviour, metabolism and oxidative stress of early stages of the white seabream Diplodus sargus. Combined warming and hypoxia synergistically increased larval mortality by >51%. Warming induced faster growth in length and slower gains in weight when compared to other treatments. Boldness and exploration were not directly affected, but swimming activity increased under all test treatments. Under the combination of warming and hypoxia, routine metabolic rate (RMR) significantly decreases when compared to other treatments and shows a negative thermal dependence. Superoxide dismutase and catalase activities increased under warming and were maintained similar to control levels under hypoxia or under combined stressors. Under hypoxia, the enzymatic activities were not enough to prevent oxidative damages as lipid peroxidation and DNA damage increased above control levels. Hypoxia reduced electron transport system activity (cellular respiration) and isocitrate dehydrogenase activity (aerobic metabolism) below control levels. However, lactate dehydrogenase activity (anaerobic metabolism) did not differ among treatments. A Redundancy Analysis showed that ∼99% of the variability in mortality, growth, behaviour and RMR among treatments can be explained by molecular responses. Mortality and growth are highly influenced by oxidative stress and energy metabolism, exhibiting a positive relationship with reactive oxygen species and a negative relationship with aerobic metabolism, regardless of treatment. Under hypoxic condition, RMR, boldness and swimming activity have a positive relationship with anaerobic metabolism regardless of temperature. Thus, seabreams may use anaerobic reliance to counterbalance the effects of the stressors on RMR, activity and growth. The outcomes suggests that early life stages of white seabream overcame the single and combined effects of hypoxia and warming.


Assuntos
Hipóxia , Dourada , Animais , Temperatura , Dourada/metabolismo , Larva , Oceanos e Mares
3.
Biology (Basel) ; 12(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998033

RESUMO

Fatty acids are energy sources, and their profiles are used as biomarkers of metabolic status and physiological changes in fish. Within this context, the main aim of this study was to identify the fatty acids that best discriminate the reproductive status of male and female farmed brown trout. The fatty acid composition in liver and plasma samples from the adults of both sexes was monitored along four distinct reproductive stages, namely the spawning capable (December), regressing (March), regenerating (July), and developing (November) stages. Irrespective of the sex and stage, the most representative fatty acids were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1 n-9), arachidonic acid (20:4 n-6), eicosapentaenoic acid (EPA, 20:5 n-3), and docosahexaenoic acid (DHA, 22:6 n-3). There were no significant sex differences in fatty acid classes in the liver and plasma. Despite this, there were several changes in individual fatty acid levels between the sexes. In the liver, both males and females showed high monounsaturated fatty acid and low polyunsaturated fatty acid (PUFA) levels during the regressing and regenerating stages. At spawning capable and developing stages, a reverse profile was noted. The plasma profiles were mainly influenced by changes in saturated fatty acids and PUFAs in males and by PUFA in females. Based on the most representative fatty acids, four patterns were established for female plasma samples, one for each reproductive stage. This scenario suggests that female plasma samples are promising for the discrimination of gonadal reproductive status, and this potential can be further explored in aquaculture and environmental monitoring studies.

4.
Mar Drugs ; 21(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888450

RESUMO

Algae have emerged as fascinating subjects of study due to their vast potential as sources of valuable metabolites with diverse biotechnological applications, including their use as fertilizers, feed, food, and even pharmaceutical precursors. Among the numerous compounds found in algae, lectins have garnered special attention for their unique structures and carbohydrate specificities, distinguishing them from lectins derived from other sources. Here, a comprehensive overview of the latest scientific and technological advancements in the realm of algal lectins with a particular focus on their antiviral properties is provided. These lectins have displayed remarkable effectiveness against a wide range of viruses, thereby holding great promise for various antiviral applications. It is worth noting that several alga species have already been successfully commercialized for their antiviral potential. However, the discovery of a diverse array of lectins with potent antiviral capabilities suggests that the field holds immense untapped potential for further expansion. In conclusion, algae stand as a valuable and versatile resource, and their lectins offer an exciting avenue for developing novel antiviral agents, which may lead to the development of cutting-edge antiviral therapies.


Assuntos
Lectinas , Alga Marinha , Humanos , Lectinas/farmacologia , Lectinas/química , Plantas , Biotecnologia , Antivirais/farmacologia , Alga Marinha/química
5.
Sci Rep ; 13(1): 11720, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474712

RESUMO

Anthropogenic climate change, particularly seawater warming, is expected to drive quick shifts in marine species distribution transforming coastal communities. These shifts in distribution will be particularly noticeable in biogeographical transition zones. The continental Portuguese coast stretches from north to south along 900 km. Despite this short spatial scale, the strong physical gradient intensified by the Iberian upwelling creates a transition zone where seaweed species from boreal and Lusitanian-Mediterranean origin coexist. On the northern coast, kelp marine forests thrive in the cold, nutrient-rich oceanic waters. In the south, communities resemble Mediterranean-type seaweed assemblages and are dominated by turfs. Recent evidence suggests that in these coastal areas, marine intertidal species are shifting their distribution edges as a result of rising seawater temperatures. Taking advantage of previous abundance data collected in 2012 from subtidal seaweed communities, a new sampling program was carried out in the same regions in 2018 to assess recent changes. The results confirmed the latitudinal gradient in macroalgal assemblages. More importantly we found significant structural and functional changes in a short period of six years, with regional increases of abundance of warm-affinity species, small seaweeds like turfs. Species richness, diversity, and biomass increase, all accompanied by an increase of community temperature index (CTI). Our findings suggest that subtidal seaweed communities in this transitional area have undergone major changes within a few years. Evidence of "fast tropicalization" of the subtidal communities of the Portuguese coast are strong indication of the effects of anthropic climate change over coastal assemblages.


Assuntos
Kelp , Alga Marinha , Ecossistema , Biomassa , Temperatura
6.
Environ Sci Pollut Res Int ; 30(19): 56137-56147, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36913023

RESUMO

Brachionus plicatilis is a cosmopolitan rotifer used as a model organism in several research areas and as live food in aquaculture. Being a species complex, responses to stressors vary even among strains of the same species and, thus, the responses of one species are not representative of the whole complex. This study aimed to address the effects of extreme salinity ranges, and different concentrations of hydrogen peroxide, copper, cadmium, and chloramphenicol, in two strains of B. koreanus (MRS10 and IBA3) from B. plicatilis species complex, by assessing effects on their survival and swimming capacity. Neonates (0-4 h old) were exposed to the stressors in 48 well-microplates, for 24 and 6 h, to evaluate lethal and behavioural effects, respectively. Tested conditions of chloramphenicol did not show any effects on rotifers. The behavioural endpoint showed to be particularly sensitive to assess the effects of high salinity, hydrogen peroxide, and copper sulfate, as swimming capacity impairment was observed for both strains in the lowest concentrations used in lethal tests. Overall, results showed that IBA3 was more tolerant to the majority of stressors, comparing to MRS10, which may be due to differences in physiological characteristics, highlighting the importance of performing multiclonal experiments. Also, swimming capacity inhibition proved to be a good alternative to the classical lethality tests, being sensitive to lower concentrations and with shorter exposure periods.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Humanos , Recém-Nascido , Natação , Peróxido de Hidrogênio/farmacologia , Estresse Fisiológico , Poluentes Químicos da Água/farmacologia
7.
Sci Total Environ ; 872: 162095, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36791860

RESUMO

Top predators such as most shark species are extremely vulnerable to amassing high concentrations of contaminants, but not much is known about the effects that the contaminant body burden imparts on these animals. Species like the blue shark (Prionace glauca) are very relevant in this regard, as they have high ecological and socioeconomic value, and have the potential to act as bioindicators of pollution. This work aimed to assess if differences in contaminant body burden found in blue sharks from the Northeast Atlantic would translate into differences in stress responses. Biochemical responses related to detoxification and oxidative stress, and histological alterations were assessed in the liver and gills of 60 blue sharks previously found to have zone-related contamination differences. Similar zone-related differences were found in biomarker responses, with the sharks from the most contaminated zone exhibiting more pronounced responses. Additionally, strong positive correlations were found between contaminants (i.e., As, PCBs, and PBDEs) and relevant biomarkers (e.g., damaged DNA and protective histological alterations). The present results are indicative of the potential that this species and these tools have to be used to monitor pollution in different areas of the Atlantic.


Assuntos
Biomarcadores Ambientais , Tubarões , Animais , Oceano Atlântico
8.
Mar Environ Res ; 185: 105894, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738699

RESUMO

The growth of human populations has been driving an unprecedent and widespread increase in marine traffic, posing a real threat to marine biodiversity. Even though we are now aware of the negative effects of shipping noise exposure on fish, information about the impact on their early life stages continues to lack. Meagre (Argyrosomus regius) is a vocal fish that uses estuaries with high levels of anthropogenic noise pollution as both breeding areas and nurseries. Here, the effects of boat noise exposure on the development and survival of meagre larvae were studied. Embryos and larvae were exposed to either noise (boat noise playback) or control treatments (coils producing a similar electric field to the speakers) and hatching rate, survival rate, morphometric traits and stress-related biomarkers, at hatching and at 2 days-post-hatching (dph) were analyzed. Results showed no conclusive effects of the impact of boat noise playback, even though there was an increased lipid droplet consumption and a decrease in body depth at 2dph larvae under this stressor. The assessment of oxidative stress and energy metabolism-related biomarkers at hatching showed a marginal decrease in superoxide dismutase (SOD) activity and no changes in DNA damage or electron transport system activity (ETS), although it cannot be disregarded that those effects could only be visible at later stages of larval development. Whether these morphological and developmental results have implications in later stages remains to be investigated. Further studies with longer exposure and wild meagre could help deepen this knowledge and provide a better understanding of how anthropogenic noise can impact meagre early stages.


Assuntos
Ruído , Perciformes , Animais , Humanos , Ruído/efeitos adversos , Perciformes/genética , Peixes , Larva , Biomarcadores
9.
J Fungi (Basel) ; 9(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36836383

RESUMO

Fungal infections cause losses amounting to between 20 and 25% of the fruit industry's total outcome, with an escalating impact on agriculture in the last decades. As seaweeds have long demonstrated relevant antimicrobial properties against a wide variety of microorganisms, extracts from Asparagopsis armata, Codium sp., Fucus vesiculosus, and Sargassum muticum were used to find sustainable, ecofriendly, and safe solutions against Rocha pear postharvest fungal infections. Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, and Penicillium expansum mycelial growth and spore germination inhibition activities were tested in vitro with five different extracts of each seaweed (n-hexane, ethyl acetate, aqueous, ethanolic, and hydroethanolic). An in vivo assay was then performed using the aqueous extracts against B. cinerea and F. oxysporum in Rocha pear. The n-hexane, ethyl acetate, and ethanolic extracts from A. armata showed the best in vitro inhibitory activity against B. cinerea, F. oxysporum, and P. expansum, and promising in vivo results against B. cinerea using S. muticum aqueous extract were also found. The present work highlights the contribution of seaweeds to tackle agricultural problems, namely postharvest phytopathogenic fungal diseases, contributing to a greener and more sustainable bioeconomy from the sea to the farm.

10.
Environ Pollut ; 316(Pt 1): 120467, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273690

RESUMO

Chemical pollution is a major threat to marine ecosystems, and top predators such as most shark species are extremely vulnerable to being exposed and accumulating contaminants such as metals and persistent organic pollutants (POPs). This work aimed to study the degree, composition, and the sources of contamination in the blue shark (Prionace glauca) inhabiting the Northeast Atlantic, as well as the potential risk faced by human consumers. A total of 60 sharks were sampled in situ aboard fishing vessels, and the concentrations of a set of metals and POPs were analysed in various tissues and complemented with stable isotope analyses. High levels of contaminants were found in most sharks sampled. The concentrations of most metals were higher in the muscle when compared with the liver. Regarding the dangers to consumers posed by the concentrations of arsenic (As), mercury (Hg), and lead (Pb), over 75% of the sharks presented muscle concentrations of at least one contaminant above the legal limits for human consumption, and a risk assessment determined that consumption of meat of these sharks exceeding 0.07 Kg per week could potentially expose human consumers to dangerous amounts of methylmercury (MeHg). Additionally, the assessment of single contaminants may lead to an underestimation of the risk for the human health. Finally, the overall accumulation of contaminants seems to be mostly influenced by the sharks' geographical distribution, rather than sex, size, or trophic level of their prey.


Assuntos
Arsênio , Mercúrio , Tubarões , Poluentes Químicos da Água , Humanos , Animais , Poluentes Químicos da Água/análise , Ecossistema , Mercúrio/análise , Arsênio/análise , Metais
11.
Biology (Basel) ; 11(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552291

RESUMO

Effects assessed at higher levels of biological organization (populations and communities) are the consequence of the sum of effects on individuals, which usually result from impacts at cellular and molecular levels. Given this rationale, these lower levels of biological organization are more responsive at an early stage, making them potential resources that can be used as early warning endpoints to address environmental stress. In this way, the information concerning effects at the molecular level of biological organization (e.g., transcripts, proteins, or metabolites) allows for an early assessment of future ecosystem problems, which may eventually enable a timely intervention before the impacts become visible and irreversible. However, despite providing an early warning and a better understanding of the toxicity mechanisms, enabling the protection of biological integrity, the most significant setback is that these endpoints may fail to foresee later impacts on the environment due to the ecosystem resilience or a weak link to the effects in the following level of biological organization, making these tools simply too conservative for stakeholders' interests. Hence, an approach targeting lower levels of biological organization will greatly benefit from addressing potential effects at higher levels. This can be achieved by establishing a link in biological organization, where the effects assessed at the lower end of biological organization are linked with the high probability of causing an effect at the other end, inducing changes in populations and communities, and eventually altering ecosystems in the future.

12.
Toxics ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36548613

RESUMO

Sodium Dodecyl Sulfate (SDS) is an anionic surfactant, extensively used in detergents, household and personal care products, as well as in industrial processes. The present study aimed to disclose the potential toxicological effects of SDS exposure under environmentally relevant concentrations (0, 0.1, 1, 3, and 10 mg L-1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems, and energy balance) of two marine autotrophs: the diatom Phaeodactylum tricornutum and the macroalgae Ulva lactuca. A growth rate (GR) reduction in P. tricornutum was observed with a classic dose-response effect towards the highest applied concentration, while a GR increase occurred in U. lactuca. Regarding photochemistry, the decrease in the fluorescence of the OJIP curves and laser-induced fluorescence allowed a better separation between SDS treatments in U. lactuca compared with P. tricornutum. Although all pigments significantly decreased in U. lactuca at the highest concentrations (except for antheraxanthin), no significant variations occurred in P. tricornutum. On the other hand, changes in fatty acid content were observed in P. tricornutum but not in U. lactuca. In terms of classical biomarker assessment, a dose-effect relationship of individual biomarkers versus SDS dose applied; U. lactuca displayed a higher number of biomarker candidates, including those in distinct metabolic pathways, increasing its usefulness for ecotoxicological applications. By evaluating the potential application of optical and biochemical traits, it was evident that the fatty acid profiles of the different exposure groups are excellent candidates in P. tricornutum, concomitant with the characteristics of this anionic surfactant. On the other hand, the results presented by laser-induced fluorescence and some parameters of PAM fluorometry in U. lactuca may be an advantage in the field, offering non-invasive, fast, easy-to-use, high-throughput screening techniques as excellent tools for ecotoxicology assessment.

13.
Food Res Int ; 161: 111884, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192997

RESUMO

This work focuses on understanding the action of a novel seaweed extract with anti-browning functionality in fresh-cut apples. Organic fresh-cut apples were coated by immersion in an aqueous Codium tomentosum seaweed extract (0.5 % w/v), packaged under ambient atmospheric conditions in plastic bags, and stored at 4 ˚C for 15 days. Browning-related enzymatic activities, as well as targeted gene expression related to superficial browning, were monitored immediately after coating and followed at five-day intervals, until a final storage period of 15 days. Gene expression was particularly affected one hour after coating application (day 0), with no expression registered for peroxidase (mdPOD) and phenylalanine ammonia-lyase (mdPAL) genes in the coated samples. A reduction in polyphenol oxidase expression levels was also observed. After 15 days of storage, the coated samples developed lower browning levels and presented distinctly lower activities of polyphenol oxidase and peroxidase - the oxidative enzymes predominantly involved in enzymatic browning. The observed post-coating suppression of mdPAL and mdPOD expression, and reduction in mdPPO expression, suggest that the seaweed C. tomentosum extract delays the activation of these genes, and decreases enzymatic activity, which in turn accounts for the coating's anti-browning effect.


Assuntos
Malus , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Malus/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Extratos Vegetais/farmacologia , Plásticos
14.
Toxics ; 10(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36006109

RESUMO

The use of glyphosate-based herbicides (GBHs) worldwide has increased exponentially over the last two decades increasing the environmental risk to marine and coastal habitats. The present study investigated the effects of GBHs at environmentally relevant concentrations (0, 10, 50, 100, 250, and 500 µg·L-1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems and energy balance) of Ulva lactuca, a cosmopolitan marine macroalgae species. Although GBHs cause deleterious effects such as the inhibition of photosynthetic activity, particularly at 250 µg·L-1, due to the impairment of the electron transport in the chloroplasts, these changes are almost completely reverted at the highest concentration (500 µg·L-1). This could be related to the induction of tolerance mechanisms at a certain threshold or tipping point. While no changes occurred in the energy balance, an increase in the pigment antheraxanthin is observed jointly with an increase in ascorbate peroxidase activity. These mechanisms might have contributed to protecting thylakoids against excess radiation and the increase in reactive oxygen species, associated with stress conditions, as no increase in lipid peroxidation products was observed. Furthermore, changes in the fatty acids profile, usually attributed to the induction of plant stress response mechanisms, demonstrated the high resilience of this macroalgae. Notably, the application of bio-optical tools in ecotoxicology, such as pulse amplitude modulated (PAM) fluorometry and laser-induced fluorescence (LIF), allowed separation of the control samples and those treated by GBHs in different concentrations with a high degree of accuracy, with PAM more accurate in identifying the different treatments.

15.
Antioxidants (Basel) ; 11(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892644

RESUMO

The present-day COVID-19 pandemic has led to the increasing daily use of antimicrobials worldwide. Triclosan is a manmade disinfectant chemical used in several consumer healthcare products, and thus frequently detected in surface waters. In the present work, we aimed to evaluate the effect of triclosan on diatom cell photophysiology, fatty acid profiles, and oxidative stress biomarkers, using the diatom Phaeodactylum tricornutum as a model organism. Several photochemical effects were observed, such as the lower ability of the photosystems to efficiently trap light energy. A severe depletion of fucoxanthin under triclosan application was also evident, pointing to potential use of carotenoid as reactive oxygen species scavengers. It was also observed an evident favouring of the peroxidase activity to detriment of the SOD activity, indicating that superoxide anion is not efficiently metabolized. High triclosan exposure induced high cellular energy allocation, directly linked with an increase in the energy assigned to vital functions, enabling cells to maintain the growth rates upon triclosan exposure. Oxidative stress traits were found to be the most efficient biomarkers as promising tools for triclosan ecotoxicological assessments. Overall, the increasing use of triclosan will lead to significant effects on the diatom photochemical and oxidative stress levels, compromising key roles of diatoms in the marine system.

16.
Sci Total Environ ; 830: 154735, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337882

RESUMO

Anthropogenic noise is a growing threat to marine organisms, including fish. Yet very few studies have addressed the impact of anthropogenic noise on fish reproduction, especially in situ. In this study, we investigated the impacts of boat noise exposure in the reproductive success of wild Lusitanian toadfish (Halobatrachus didactylus), a species that relies on advertisement calls for mate attraction, using behavioural, physiological and reproductive endpoints. Two sets of artificial nests were deployed in the Tagus estuary and exposed to either ambient sound or boat noise during their breeding season. Toadfish males spontaneously used these nests to breed. We inspected nests for occupation and the presence of eggs in six spring low tides (in two years) and assessed male vocal activity and stress responses. Boat noise did not affect nest occupation by males but impacted reproductive success by decreasing the likelihood of receiving eggs, decreasing the number of live eggs and increasing the number of dead eggs, compared to control males. Treatment males also showed depressed vocal activity and slightly higher cortisol levels. The assessment of oxidative stress and energy metabolism-related biomarkers revealed no oxidative damage in noise exposed males despite having lower antioxidant responses and pointed towards a decrease in the activity levels of energy metabolism-related biomarkers. These results suggest that males exposed to boat noise depressed their metabolism and their activity (such as parental care and mate attraction) to cope with an acoustic stressor, consistent with a freezing defensive response/behaviour. Together, our study demonstrates that boat noise has severe impacts on reproductive fitness in Lusitanian toadfish. We argue that, at least fishes that cannot easily avoid noise sources due to their dependence on specific spawning sites, may incur in significant direct fitness costs due to chronic noise exposure.


Assuntos
Batracoidiformes , Navios , Acústica , Animais , Masculino , Ruído/efeitos adversos , Reprodução
17.
Mar Pollut Bull ; 176: 113418, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35150988

RESUMO

Bioindicator species are increasingly valuable in environmental pollution monitoring, and elasmobranch species include many suitable candidates for that role. By measuring contaminants and employing biomarkers of effect in relevant elasmobranch species, scientists may gain important insights about the impacts of pollution in marine ecosystems. This review compiles biomarkers applied in elasmobranchs to assess the effect of pollutants (e.g., metals, persistent organic pollutants, and plastics), and the environmental changes induced by anthropogenic activities (e.g., shifts in marine temperature, pH, and oxygenation). Over 30 biomarkers measured in more than 12 species were examined, including biotransformation biomarkers (e.g., cytochrome P450 1A), oxidative stress-related biomarkers (e.g., superoxide anion, lipid peroxidation, catalase, and vitamins), stress proteins (e.g., heat shock protein 70), reproductive and endocrine biomarkers (e.g., vitellogenin), osmoregulation biomarkers (e.g., trimethylamine N-oxide, Na+/K+-ATPase, and plasma ions), energetic and neurotoxic biomarkers (e.g., lactate dehydrogenase, lactate, and cholinesterases), and histopathological and morphologic biomarkers (e.g., tissue lesions and gross indices).


Assuntos
Elasmobrânquios , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Ecossistema , Elasmobrânquios/metabolismo , Biomarcadores Ambientais , Monitoramento Ambiental , Poluentes Químicos da Água/análise
18.
Environ Pollut ; 292(Pt B): 118451, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740735

RESUMO

The assessment of contaminant exposure in marine organisms often focuses on the most toxic chemical elements from upper trophic level species. Information on mid-trophic level species and particularly on potentially less harmful elements is lacking. Additionally, microplastics have been considered emergent contaminants in aquatic environments which have not been extensively studied in species from mid-trophic levels in food chains. This study aims to contribute to an overall assessment of environmental impacts of such chemicals in a community of small pelagic fish in the North Atlantic. The concentrations of 16 chemical elements, rarely simultaneously quantified (including minerals, trace elements and heavy metals), and the presence of microplastics were analysed in sardines (Sardina pilchardus) and mackerels (Scomber spp. and Trachurus trachurus) sampled along the Portuguese coast. Biochemical stress assessments and stable isotope analyses were also performed. The chemical element concentrations in S. pilchardus, T. trachurus, and Scomber spp. were relatively low and lower than the levels reported for the same species in the North Atlantic and adjacent areas. No clear relationships were found between chemical elements and oxidative damage in fish. However, the concentration of several chemical elements showed differences among species, being related with the species' habitat use, trophic niches, and specific feeding strategies. The presence of plastic pieces in the stomachs of 29% of the sampled fishes is particularly concerning, as these small pelagic fish from mid-trophic levels compose a significant part of the diet of humans and other top predators. This study highlights the importance of multidisciplinary approaches focusing on the individual, including position data, stable isotopes, and oxidative stress biomarkers as complementary tools in contamination assessment of the marine mid-trophic levels in food chains.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Humanos , Plásticos , Poluentes Químicos da Água/análise
19.
Environ Pollut ; 293: 118490, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780755

RESUMO

Metals are persistent worldwide being harmful for diverse organisms and having complex and combined effects with other contaminants in the environment. Sea turtles accumulate these contaminants being considered good bioindicator species for marine pollution. However, very little is known on how this is affecting these charismatic animals. São Tomé and Príncipe archipelago harbours important green sea turtle (Chelonia mydas) nesting and feeding grounds. The main goal of this study was to determine metal and metalloid accumulation in the blood of females C. mydas nesting in São Tomé Island, and evaluate the possible impacts of this contamination by addressing molecular stress responses. Gene expression analysis was performed in blood targeting genes involved in detoxification/sequestration and metal transport (mt, mtf and fer), and in antioxidant and oxidative stress responses (cat, sod, gr, tdx, txrd, selp and gclc). Micronuclei analysis in blood was also addressed as a biomarker of genotoxicity. Present results showed significant correlations between different gene expressions with the metals evaluated. The best GLM models and significant relationships were found for mt expression, for which 78% of the variability was attributed to metal levels (Al, Cu, Fe, Hg, Pb and Zn), followed by micronuclei count (65% - Cr, Cu, Fe, Hg, Mn and Zn), tdx expression (52% - Cd, Fe, Mn, Pb and Se), and cat expression (52% - As, Fe, Se and Cd x Hg). Overall, this study demonstrates that these green sea turtles are trying to adapt to the oxidative stress and damage produced by metals through the increased expression of antioxidants and other protectors, which raises concerns about the impacts on these endangered organisms' fitness. Furthermore, promising biomarker candidates associated to metal stress were identified in this species that may be used in future biomonitoring studies using C. mydas' blood, allowing for a temporal follow-up of the organisms.


Assuntos
Tartarugas , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Feminino , Metais/toxicidade , Estresse Oxidativo , Tartarugas/metabolismo , Poluentes Químicos da Água/toxicidade
20.
Mar Biotechnol (NY) ; 24(1): 40-54, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34855032

RESUMO

Aurantiochytrium sp. is an emerging alternative source of polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and squalene, playing an important role in the phasing out of traditional fish sources for these compounds. Novel lipid extraction techniques with a focus on sustainability and low environmental footprint are being developed for this organism, but the exploration of other added-value compounds within it is still very limited. In this work, a combination of novel green extraction techniques (high hydrostatic pressure extraction (HPE) and supercritical fluid extraction (SFE)) and traditional techniques (organic solvent Soxhlet extraction and hydrodistillation (HD)) was used to obtain lipophilic extracts of Aurantiochytrium sp., which were then screened for antioxidant (DPPH radical reduction capacity and ferric-reducing antioxidant potential (FRAP) assays), lipid oxidation protection, antimicrobial, anti-aging enzyme inhibition (collagenase, elastase and hyaluronidase), and anti-inflammatory (inhibition of NO production) activities. The screening revealed promising extracts in nearly all categories of biological activity tested, with only the enzymatic inhibition being low in all extracts. Powerful lipid oxidation protection and anti-inflammatory activity were observed in most SFE samples. Ethanolic HPEs inhibited both lipid oxidation reactions and microbial growth. The HD extract demonstrated high antioxidant, antimicrobial, and anti-inflammatory activities making, it a major contender for further studies aiming at the valorization of Aurantiochytrium sp. Taken together, this study presents compelling evidence of the bioactive potential of Aurantiochytrium sp. and encourages further exploration of its composition and application.


Assuntos
Cromatografia com Fluido Supercrítico , Estramenópilas , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia com Fluido Supercrítico/métodos , Extratos Vegetais/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA