Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(32): eadl5473, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121212

RESUMO

Despite advancements in antifibrotic therapy, idiopathic pulmonary fibrosis (IPF) remains a medical condition with unmet needs. Single-cell RNA sequencing (scRNA-seq) has enhanced our understanding of IPF but lacks the cellular tissue context and gene expression localization that spatial transcriptomics provides. To bridge this gap, we profiled IPF and control patient lung tissue using spatial transcriptomics, integrating the data with an IPF scRNA-seq atlas. We identified three disease-associated niches with unique cellular compositions and localizations. These include a fibrotic niche, consisting of myofibroblasts and aberrant basaloid cells, located around airways and adjacent to an airway macrophage niche in the lumen, containing SPP1+ macrophages. In addition, we identified an immune niche, characterized by distinct lymphoid cell foci in fibrotic tissue, surrounded by remodeled endothelial vessels. This spatial characterization of IPF niches will facilitate the identification of drug targets that disrupt disease-driving niches and aid in the development of disease relevant in vitro models.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Transcriptoma , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/genética , Humanos , Pulmão/patologia , Pulmão/metabolismo , Macrófagos/metabolismo , Análise de Célula Única , Perfilação da Expressão Gênica , Miofibroblastos/metabolismo , Miofibroblastos/patologia
2.
Toxicol Pathol ; 52(5): 251-257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38829005

RESUMO

Digitalization of pathology workflows has undergone a rapid evolution and has been widely established in the diagnostic field but remains a challenge in the nonclinical safety context due to lack of regulatory guidance and validation experience for good laboratory practice (GLP) use. One means to demonstrate that digital slides are fit for purpose, that is, provide sufficient quality for pathologists to reach a diagnosis, is conduction of comparison studies, which have been published both, for veterinary and human diagnostic pathology, but not for toxicologic pathology. Here, we present an approach that uses study material from nonclinical safety studies and that allows for the statistical comparison of concordance rates for glass and digital slide evaluation while minimizing time and effort for the involved personnel. Using a benchmark study design, we demonstrate that evaluation of digital slides fits the purpose of nonclinical safety evaluation. These results add to reports of successful workflow validations and support the full adaptation of digital pathology in the regulatory field.


Assuntos
Microscopia , Patologia , Toxicologia , Microscopia/métodos , Patologia/métodos , Patologia/normas , Animais , Toxicologia/métodos , Toxicologia/normas , Processamento de Imagem Assistida por Computador/métodos , Humanos
3.
Front Immunol ; 15: 1232070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638443

RESUMO

Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-ß1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.


Assuntos
Células de Kupffer , Hepatopatia Gordurosa não Alcoólica , Humanos , Células de Kupffer/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Interleucina-13/metabolismo , Secretoma , Macrófagos , Cirrose Hepática , Células Matadoras Naturais/metabolismo
4.
Med Image Anal ; 92: 103067, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141454

RESUMO

We present a system for anomaly detection in histopathological images. In histology, normal samples are usually abundant, whereas anomalous (pathological) cases are scarce or not available. Under such settings, one-class classifiers trained on healthy data can detect out-of-distribution anomalous samples. Such approaches combined with pre-trained Convolutional Neural Network (CNN) representations of images were previously employed for anomaly detection (AD). However, pre-trained off-the-shelf CNN representations may not be sensitive to abnormal conditions in tissues, while natural variations of healthy tissue may result in distant representations. To adapt representations to relevant details in healthy tissue we propose training a CNN on an auxiliary task that discriminates healthy tissue of different species, organs, and staining reagents. Almost no additional labeling workload is required, since healthy samples come automatically with aforementioned labels. During training we enforce compact image representations with a center-loss term, which further improves representations for AD. The proposed system outperforms established AD methods on a published dataset of liver anomalies. Moreover, it provided comparable results to conventional methods specifically tailored for quantification of liver anomalies. We show that our approach can be used for toxicity assessment of candidate drugs at early development stages and thereby may reduce expensive late-stage drug attrition.


Assuntos
Desenvolvimento de Medicamentos , Redes Neurais de Computação , Humanos
5.
Toxicol Pathol ; 50(3): 344-352, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35321595

RESUMO

Convolutional neural networks (CNNs) have been recognized as valuable tools for rapid quantitative analysis of morphological changes in toxicologic histopathology. We have assessed the performance of CNN-based (Halo-AI) mitotic figure detection in hepatocytes in comparison with detection by pathologists. In addition, we compared with Ki-67 and 5-bromodesoxyuridin (BrdU) immunohistochemistry labeling indices (LIs) obtained by image analysis. Tissues were from an exploratory toxicity study with a glycogen synthase kinase-3 (GSK-3) inhibitor. Our investigations revealed that (1) the CNN achieved similarly accurate but faster results than pathologists, (2) results of mitotic figure detection were comparable to Ki-67 and BrdU LIs, and (3) data from different methods were only moderately correlated. The latter is likely related to differences in the cell cycle component captured by each method. This highlights the importance of considering the differences of the available methods upon selection. Also, the pharmacology of our test item acting as a GSK-3 inhibitor potentially reduced the correlation. We conclude that hepatocyte cell proliferation assessment by CNNs can have several advantages when compared with the current gold standard: it relieves the pathologist of tedious routine tasks and contributes to standardization of results; the CNN algorithm can be shared and iteratively improved; it can be performed on routine histological slides; it does not require an additional animal experiment and in this way can contribute to animal welfare according to the 3R principles.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Bromodesoxiuridina , Quinase 3 da Glicogênio Sintase , Antígeno Ki-67 , Mitose , Redes Neurais de Computação , Ratos
6.
J Fungi (Basel) ; 6(4)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261008

RESUMO

Lack of sensitive diagnostic tests impairs the understanding of the epidemiology of histoplasmosis, a disease whose burden is estimated to be largely underrated. Broad-range PCRs have been applied to identify fungal agents from pathology blocks, but sensitivity is variable. In this study, we compared the results of a specific Histoplasma qPCR (H. qPCR) with the results of a broad-range qPCR (28S qPCR) on formalin-fixed, paraffin-embedded (FFPE) tissue specimens from patients with proven fungal infections (n = 67), histologically suggestive of histoplasmosis (n = 36) and other mycoses (n = 31). The clinical sensitivity for histoplasmosis of the H. qPCR and the 28S qPCR was 94% and 48.5%, respectively. Samples suggestive for other fungal infections were negative with the H. qPCR. The 28S qPCR did not amplify DNA of Histoplasma in FFPE in these samples, but could amplify DNA of Emergomyces (n = 1) and Paracoccidioides (n = 2) in three samples suggestive for histoplasmosis but negative in the H. qPCR. In conclusion, amplification of Histoplasma DNA from FFPE samples is more sensitive with the H. qPCR than with the 28S qPCR. However, the 28S qPCR identified DNA of other fungi in H. qPCR-negative samples presenting like histoplasmosis, suggesting that the combination of both assays may improve the diagnosis.

8.
Arch Toxicol ; 93(4): 1095-1139, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30756133

RESUMO

In 2012, a controversial study on the long-term toxicity of a Roundup herbicide and the glyphosate-tolerant genetically modified (GM) maize NK603 was published. The EC-funded G-TwYST research consortium tested the potential subchronic and chronic toxicity as well as the carcinogenicity of the glyphosate-resistant genetically modified maize NK603 by performing two 90-day feeding trials, one with GM maize inclusion rates of 11 and 33% and one with inclusion rates of up to 50%, as well as a 2-year feeding trial with inclusion rates of 11 and 33% in male and female Wistar Han RCC rats by taking into account OECD Guidelines for the testing of chemicals and EFSA recommendations on the safety testing of whole-food/feed in laboratory animals. In all three trials, the NK603 maize, untreated and treated once with Roundup during its cultivation, and the conventional counterpart were tested. Differences between each test group and the control group were evaluated. Equivalence was assessed by comparing the observed difference to differences between non-GM reference groups in previous studies. In case of significant differences, whether the effects were dose-related and/or accompanied by changes in related parameters including histopathological findings was evaluated. It is concluded that no adverse effects related to the feeding of the NK603 maize cultivated with or without Roundup for up to 2 years were observed. Based on the outcome of the subchronic and combined chronic toxicity/carcinogenicity studies, recommendations on the scientific justification and added value of long-term feeding trials in the GM plant risk assessment process are presented.


Assuntos
Ração Animal/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Alimentos Geneticamente Modificados , Glicina/análogos & derivados , Herbicidas/toxicidade , Plantas Geneticamente Modificadas/efeitos dos fármacos , Zea mays , Animais , Testes de Carcinogenicidade , Resistência a Medicamentos/genética , Feminino , Glicina/toxicidade , Masculino , Plantas Geneticamente Modificadas/genética , Ratos Wistar , Testes de Toxicidade Crônica , Testes de Toxicidade Subcrônica , Zea mays/efeitos dos fármacos , Zea mays/genética , Glifosato
9.
Comp Med ; 68(6): 489-495, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486920

RESUMO

Here we report a case of severe growth retardation and neurologic abnormalities in a female gray mouse lemur (Microcebus murinus), a small NHP species for which the genomic sequence recently became available. The female lemur we present here died on postnatal day 125. This lemur had impaired development of motor skills and showed severe ataxia and tremors. In addition, hearing seemed normal whereas ophthalmic examination revealed incipient bilateral cataracts, abnormal pigmentation in the lens of the left eye, and a missing optokinetic nystagmus, which indicated impaired vision. Most prominently, the lemur showed severe growth retardation. Necropsy revealed maldevelopment of the left reproductive organs and unilateral dilation of the right lateral ventricle, which was confirmed on brain MRI. Brain histology further revealed large, bilateral areas of vacuolation within the brainstem, but immunohistochemistry indicated no sign of pathologic prion protein deposition. Full genomic sequencing of the lemur revealed a probably pathologic mutation in LARGE2 of the LARGE gene family, which has been associated with congenital muscular dystrophies. However, potentially functional mutations in other genes were also present. The observed behavioral and motor signs in the presented animal might have been linked to spongiform degeneration and resulting brainstem dysfunction and progressive muscle weakness. The macroscopic developmental abnormalities and ophthalmic findings might be genetic in origin and linked to the mutation in LARGE2.


Assuntos
Cheirogaleidae/crescimento & desenvolvimento , Transtornos do Crescimento/veterinária , Doenças Neurodegenerativas/veterinária , Doenças dos Primatas/patologia , Síndrome de Walker-Warburg/veterinária , Animais , Comportamento Animal , Tronco Encefálico/patologia , Cheirogaleidae/anatomia & histologia , Cheirogaleidae/genética , Olho/patologia , Feminino , Transtornos do Crescimento/patologia , Doenças Neurodegenerativas/patologia , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia
10.
PLoS One ; 12(4): e0175469, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28399176

RESUMO

Anthropogenic landscape changes contributed to the reduction of availability of habitats to wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites has increased considerably over the years implying an increased risk of interspecies spillover of infectious diseases and the transmission of zoonoses. The present study provides a detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and peri-urban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016 with focus on zoonoses and infectious diseases that are potentially threatening to other wildlife or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were collected from traps or hunts. In order to detect morphological changes and potential infectious diseases, necropsy and pathohistological work-up was performed. Additionally, in selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum, Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus) were performed. Furthermore, all animals were screened for fox rabies virus (immunofluorescence), canine distemper virus (immunohistochemistry) and Aujeszky's disease (virus cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n = 20). None of the investigations revealed a specific cause for the observed morphological alterations except for one animal with an elevated serum titer of 1:160 for canine distemper. Animals displayed macroscopically and/or histopathologically detectable infections with parasites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators carry zoonotic parasitic disease and suffer from inflammatory diseases of yet unknown etiology, possibly bearing infectious potential for other animal species and humans. This study highlights the value of monitoring terrestrial wildlife following the "One Health" notion, to estimate the incidence and the possible spread of zoonotic pathogens and to avoid animal to animal spillover as well as transmission to humans.


Assuntos
Raposas/microbiologia , Mustelidae/microbiologia , Cães Guaxinins/microbiologia , Zoonoses , Animais , Sistema Cardiovascular/patologia , Sistema Nervoso Central/patologia , Trato Gastrointestinal/patologia , Alemanha , Sistema Musculoesquelético/patologia , Testes de Neutralização , Sistema Respiratório/patologia , Sistema Urogenital/patologia , Zoonoses/imunologia , Zoonoses/microbiologia , Zoonoses/transmissão
11.
Brain Behav ; 6(7): e00472, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27247850

RESUMO

INTRODUCTION: CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. METHODS: Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. RESULTS: Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. CONCLUSIONS: The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.


Assuntos
Transporte Axonal/fisiologia , Cinomose/genética , Cinomose/metabolismo , Leucoencefalopatias/veterinária , Animais , Estudos de Casos e Controles , Cinomose/patologia , Vírus da Cinomose Canina/isolamento & purificação , Cães , Feminino , Imuno-Histoquímica , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Leucoencefalopatias/virologia , Masculino , Fibras Nervosas Mielinizadas/patologia , Regeneração Nervosa/fisiologia , Estudos Retrospectivos , Células de Schwann/patologia , Transcriptoma
12.
J Gen Virol ; 95(Pt 11): 2480-2485, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25063552

RESUMO

The order Nidovirales contains large, enveloped viruses with a non-segmented positive-stranded RNA genome. Nidoviruses have been detected in man and various animal species, but, to date, there have been no reports of nidovirus in reptiles. In the present study, we describe the detection, characterization, phylogenetic analyses and disease association of a novel divergent nidovirus in the lung of an Indian python (Python molurus) with necrotizing pneumonia. Characterization of the partial genome (>33 000 nt) of this virus revealed several genetic features that are distinct from other nidoviruses, including a very large polyprotein 1a, a putative ribosomal frameshift signal that was identical to the frameshift signal of astroviruses and retroviruses and an accessory ORF that showed some similarity with the haemagglutinin-neuraminidase of paramyxoviruses. Analysis of genome organization and phylogenetic analysis of polyprotein 1ab suggests that this virus belongs to the subfamily Torovirinae. Results of this study provide novel insights into the genetic diversity within the order Nidovirales.


Assuntos
Boidae/virologia , Infecções por Nidovirales/veterinária , Nidovirales/genética , Nidovirales/isolamento & purificação , Pneumonia Viral/veterinária , Animais , Sequência de Bases , Variação Genética , Genoma Viral , Pulmão/patologia , Pulmão/virologia , Dados de Sequência Molecular , Nidovirales/classificação , Infecções por Nidovirales/patologia , Infecções por Nidovirales/virologia , Filogenia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Viral/genética , Homologia de Sequência do Ácido Nucleico , Proteínas Virais/genética
13.
Viruses ; 6(7): 2571-601, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24992230

RESUMO

Canine distemper virus (CDV) is a member of the genus morbillivirus, which is known to cause a variety of disorders in dogs including demyelinating leukoencephalitis (CDV-DL). In recent years, substantial progress in understanding the pathogenetic mechanisms of CDV-DL has been made. In vivo and in vitro investigations provided new insights into its pathogenesis with special emphasis on axon-myelin-glia interaction, potential endogenous mechanisms of regeneration, and astroglial plasticity. CDV-DL is characterized by lesions with a variable degree of demyelination and mononuclear inflammation accompanied by a dysregulated orchestration of cytokines as well as matrix metalloproteinases and their inhibitors. Despite decades of research, several new aspects of the neuropathogenesis of CDV-DL have been described only recently. Early axonal damage seems to represent an initial and progressive lesion in CDV-DL, which interestingly precedes demyelination. Axonopathy may, thus, function as a potential trigger for subsequent disturbed axon-myelin-glia interactions. In particular, the detection of early axonal damage suggests that demyelination is at least in part a secondary event in CDV-DL, thus challenging the dogma of CDV as a purely primary demyelinating disease. Another unexpected finding refers to the appearance of p75 neurotrophin (NTR)-positive bipolar cells during CDV-DL. As p75NTR is a prototype marker for immature Schwann cells, this finding suggests that Schwann cell remyelination might represent a so far underestimated endogenous mechanism of regeneration, though this hypothesis still remains to be proven. Although it is well known that astrocytes represent the major target of CDV infection in CDV-DL, the detection of infected vimentin-positive astrocytes in chronic lesions indicates a crucial role of this cell population in nervous distemper. While glial fibrillary acidic protein represents the characteristic intermediate filament of mature astrocytes, expression of vimentin is generally restricted to immature or reactive astrocytes. Thus, vimentin-positive astrocytes might constitute an important cell population for CDV persistence and spread, as well as lesion progression. In vitro models, such as dissociated glial cell cultures, as well as organotypic brain slice cultures have contributed to a better insight into mechanisms of infection and certain morphological and molecular aspects of CDV-DL. Summarized, recent in vivo and in vitro studies revealed remarkable new aspects of nervous distemper. These new perceptions substantially improved our understanding of the pathogenesis of CDV-DL and might represent new starting points to develop novel treatment strategies.


Assuntos
Axônios/patologia , Vírus da Cinomose Canina/patogenicidade , Cinomose/patologia , Leucoencefalopatias/patologia , Leucoencefalopatias/veterinária , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/virologia , Axônios/metabolismo , Axônios/virologia , Cinomose/genética , Cinomose/metabolismo , Cinomose/virologia , Vírus da Cinomose Canina/fisiologia , Cães , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/virologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/virologia , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/virologia , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/metabolismo , Vimentina/genética , Vimentina/metabolismo
14.
Acta Vet Scand ; 55: 28, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23557489

RESUMO

Epidural spinal myelolipoma was diagnosed in an 11.5-year-old castrated male Husky-cross that was evaluated at the veterinary teaching hospital due to progressive thoracolumbar spinal hyperaesthesia and mild proprioceptive pelvic limb ataxia. A focal, ill-defined mildly inhomogenous extradural mass lesion was detected by MRI. The dog was euthanized. At necropsy an extradurally located reddish mass of about 2.5 cm in diameter was present in the vertebral canal. The mass was identified histopathologically as an epidural myelolipoma.


Assuntos
Doenças do Cão/patologia , Neoplasias Epidurais/veterinária , Mielolipoma/veterinária , Animais , Cães , Neoplasias Epidurais/patologia , Masculino , Mielolipoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA