Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1384435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989017

RESUMO

Introduction: Global warming affects air and water temperatures, which impacts the phenology of lakes and aquatic ecosystems. These changes are most noticeable during winter, when the potentially toxic Planktothrix rubescens forms its inoculum for annual blooms. Mostly, research has been conducted on alpine lakes, where blooms have persisted for decades, while a few have focused on temperate lakes. Our study aimed to determine the factors influencing the dynamics of the development of P. rubescens in temperate lakes where blooms occasionally occur, with a particular emphasis on the role of ice phenology. Methods: We investigated the vertical distribution of P. rubescens in an annual cycle in three temperate lakes. Samples were collected monthly in the winter and biweekly during the vegetative seasons. Overall, 434 samples were collected and analyzed according to biological and chemical parameters. Physical parameters were measured in situ. Results: The vegetation seasons in temperate lakes showed a similar development pattern in the P. rubescens population as that in alpine lakes. Our results also show the influence of physical and chemical factors on the vertical distribution of this cyanobacterium. These results revealed the significant impact of P. rubescens filaments on phytoplankton biodiversity and biomass. Our data show the role of ice phenology in the establishment of the winter inoculum of P. rubescens and its further mass development until its disappearance in autumn. Conclusion: A climate-zone-independent pattern of P. rubescens blooms was observed during the vegetation periods. The population of P. rubescens was more influenced by physical factors than by the availability of dissolved nutrients in the water. Despite the same etiology, global warming has been shown to cause different responses in aquatic ecosystems, which affect the different nature of P. rubescens appearances. We associated blooms in temperate lakes, in contrast to alpine lakes, mainly with the presence of ice cover during severe winters, when the species establishes its inoculum. Hence, blooms in temperate lakes occur at different time intervals. Therefore, the dynamics of periodic blooms of P. rubescens in temperate lakes provide novel knowledge to the case study and a counterpoint to permanent blooms found in deep alpine lakes.

3.
Sci Rep ; 14(1): 6661, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509188

RESUMO

Aquatic plants are a rich source of health-beneficial substances. One of such organisms is the submerged macrophyte Ceratophyllum demersum, which has not been sufficiently studied in this aspect so far. In this work, we have studied environmental conditions prevailing in a subsidence mining reservoir in Eastern Poland and shown that C. demersum can be harvested for further analysis even from artificial anthropogenic reservoirs. The phytochemical analysis of C. demersum ethanolic extract using LC-MS revealed high content of phenolic compounds (18.50 mg/g) (mainly flavonoids, 16.09 mg/g), including those that have not yet been identified in this plant, namely isorhamnetin, sakuranetin, taxifolin, and eriodictyol. Such rich flavonoid content is most likely responsible for the anticancer activity of the C. demersum extract, which was targeted especially at neoplastic cells of gastrointestinal tract origin. The flow cytometry analysis of treated cells showed an increased percentage of late apoptotic and necrotic cells. The fish embryo toxicity (FET) test showed safety of the extract towards Danio rerio fish up to the concentration of 225 µg/ml. This study has shown that the submerged macrophyte Ceratophyllum demersum can be taken into consideration as a rich source of a set of anticancer agents with chemopreventive potential.


Assuntos
Antineoplásicos , Magnoliopsida , Polônia , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-36429622

RESUMO

Cyanobacteria dominate lakes under diverse trophic conditions. Of these, two harmful filamentous cyanobacterial species, namely Planktothrix agardhii and P. rubescens, occupy completely different ecological niches in which they can form dense populations. In the present study, we investigated the effects of environmental conditions on the growth and vertical distribution of these species in lakes of different trophic statuses. Moreover, we underscored certain inconveniences in the assessment of the ecological status of lakes according to the European Union Water Framework Directive. The highest biomass of P. agardhii was recorded in eutrophic lake at a depth of 0.5-1 m, under high light intensity. Meanwhile, the highest biomass of P. rubescens, at which the deep chlorophyll maximum was recorded, was observed in mesotrophic lakes at a depth of 11-12 m, often below the euphotic zone under very low light intensity. P. rubescens, but not P. agardhii, exerted a strong allelopathic effect on the diversity and biomass of phytoplankton. Moreover, both species utilised different dissolved nitrogen fractions for their growth; specifically, P. agardhii used ammonium nitrogen, whilst P. rubescens used nitrate nitrogen. Furthermore, dissolved phosphorus produced a potentially limiting effect on P. rubescens growth. Overall, the tested Polish PMPL, German PSI, and Estonian phytoplankton indices were indeed useful in the assessment of the ecological status of lakes, albeit limited to the eutrophic lake with a high biomass of cyanobacteria (P. agardhii) in the upper water layers. However, problems arose in the proper assessment of lakes with a high biomass of cyanobacteria (P. rubescens) with a deep chlorophyll maximum outside the range of the euphotic zone. In such cases, two of the tested indices, namely the Polish and German indices, allowed sample collection from the euphotic layers, which significantly affected the number of samples included in the calculation. Consequently, the correct calculation of the ecological status of the lake was uncertain. Only the Estonian index allowed for a sample collection from two to three thermal layers of water, including the bloom layer of P. rubescens. Hence, the Estonian index offered the best fit for calculations.


Assuntos
Cianobactérias , Lagos/microbiologia , Fitoplâncton , Ecossistema , Clorofila , Nitrogênio , Água
5.
Artigo em Inglês | MEDLINE | ID: mdl-35409518

RESUMO

Phytoplankton is one of the five biological quality elements used in the assessment of the ecological status of surface waters according to the European Water Framework Directive established in 2000. In this study, we determined the ecological status of three small and shallow lakes in the Polesie Plain, Eastern Poland, by using indices based on phytoplankton assemblages. The predominant phytoplankton of all three lakes were filamentous cyanobacteria, both heterocystous and non-heterocystous, represented by the genera Aphanizomenon, Planktothrix, Limnothrix, and Planktolyngbya. We used the Hungarian Q index, German PSI (Phyto-See-Index), and recently developed PMPL (Phytoplankton Metrics for Polish Lakes) for Polish lakes. We compared the results from the calculation of the indices to physicochemical data obtained from the lake water and Carlson's Trophy State Index (TSI). On the basis of TSI, Gumienek and Glinki lakes were classified as advanced eutrophic, whereas Czarne Lake had a better score and was classified as slightly eutrophic. The trophic state was generally confirmed by the ecological status based on phytoplankton indices and also showed the diverse ecological situation in the lakes studied. Based on the Polish PMPL, Gumienek Lake was classified as having bad status (ecological quality ratio (EQR) = 0.05), whereas Glinki and Czarne lakes were classified within the poor status range (EQR = 0.25 and 0.35, respectively). However, based on the German PSI, the lakes were classified in a different manner: the status of Gumienek and Czarne lakes was better, but unsatisfactory, because they were still below the boundary for the good status category recommended by the European Commission. The best ecological status for the studied lakes was obtained using the Q index: Gumienek Lake with EQR = 0.42 had a moderate status, and Czarne Lake with EQR = 0.62 obtained a good status. However, Glinki Lake, with EQR = 0.40, was classified at the boundary for poor and moderate status. Based on our study, it seems that the best index for ecological status assessment based on phytoplankton that can be used for small lakes is the Polish (PMPL) index.


Assuntos
Cianobactérias , Fitoplâncton , Monitoramento Ambiental/métodos , Eutrofização , Lagos/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA