Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713532

RESUMO

Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected mouse DMD-induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD-iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Remarkably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation, and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.

2.
Stem Cell Reports ; 17(2): 321-336, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34995499

RESUMO

Genetic mutations in dystrophin manifest in Duchenne muscular dystrophy (DMD), the most commonly inherited muscle disease. Here, we report on reprogramming of fibroblasts from two DMD mouse models into induced myogenic progenitor cells (iMPCs) by MyoD overexpression in concert with small molecule treatment. DMD iMPCs proliferate extensively, while expressing myogenic stem cell markers including Pax7 and Myf5. Additionally, DMD iMPCs readily give rise to multinucleated myofibers that express mature skeletal muscle markers; however, they lack DYSTROPHIN expression. Utilizing an exon skipping-based approach with CRISPR/Cas9, we report on genetic correction of the dystrophin mutation in DMD iMPCs and restoration of protein expression in vitro. Furthermore, engraftment of corrected DMD iMPCs into the muscles of dystrophic mice restored DYSTROPHIN expression and contributed to the muscle stem cell reservoir. Collectively, our findings report on a novel in vitro cellular model for DMD and utilize it in conjunction with gene editing to restore DYSTROPHIN expression in vivo.


Assuntos
Reprogramação Celular/genética , Distrofina/metabolismo , Edição de Genes/métodos , Distrofia Muscular de Duchenne/patologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Modelos Animais de Doenças , Distrofina/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desenvolvimento Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mutação , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Biology (Basel) ; 10(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922324

RESUMO

The objective of this study was to compare the effects of >Your< Iron Syrup, a novel oral liquid iron-containing food supplement, with the commonly prescribed iron sulphate (Fe-sulphate) in a mouse model of diet-induced iron deficiency. Standard inbred BALB/cOlaHsd mice were fed low-iron diet for 11 weeks to induce significant decrease in blood haemoglobin and haematocrit and were then supplemented by gavage with either >Your< Iron Syrup or Fe-sulphate for two weeks. In >Your< Iron Syrup group, several markers of iron deficiency, such as serum iron concentration, transferrin saturation and ferritin level were significantly improved in both female and male mice. Fe-sulphate induced similar responses, except that it did not significantly increase iron serum in females and serum ferritin in both sexes. Fe-sulphate significantly increased liver-iron content which >Your< Iron Syrup did not. Transcription of Hamp and selected inflammatory genes in the liver was comparable between the two supplementation groups and with the Control diet group. Some sex-specific effects were noted, which were more pronounced and less variable in males. In conclusion, >Your< Iron Syrup was efficient, comparable and in some parameters superior to Fe-sulphate in improving iron-related parameters without inducing a response of selected liver inflammation markers in a mouse model of diet-induced iron deficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA