Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 289(12): 3457-3476, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35029322

RESUMO

Mesenchyme homeobox protein 2 (MEOX2) is a transcription factor involved in mesoderm differentiation, including development of bones, muscles, vasculature and dermatomes. We have previously identified dysregulation of MEOX2 in fibroblasts from Congenital Insensitivity to Pain patients, and confirmed that btn, the Drosophila homologue of MEOX2, plays a role in nocifensive responses to noxious heat stimuli. To determine the importance of MEOX2 in the mammalian peripheral nervous system, we used a Meox2 heterozygous (Meox2+/- ) mouse model to characterise its function in the sensory nervous system, and more specifically, in nociception. MEOX2 is expressed in the mouse dorsal root ganglia (DRG) and spinal cord, and localises in the nuclei of a subset of sensory neurons. Functional studies of the mouse model, including behavioural, cellular and electrophysiological analyses, showed altered nociception encompassing impaired action potential initiation upon depolarisation. Mechanistically, we noted decreased expression of Scn9a and Scn11a genes encoding Nav 1.7 and Nav 1.9 voltage-gated sodium channels respectively, that are crucial in subthreshold amplification and action potential initiation in nociceptors. Further transcriptomic analyses of Meox2+/- DRG revealed downregulation of a specific subset of genes including those previously associated with pain perception, such as PENK and NPY. Based on these observations, we propose a novel role of MEOX2 in primary afferent nociceptor neurons for the maintenance of a transcriptional programme required for proper perception of acute and inflammatory noxious stimuli.


Assuntos
Proteínas de Homeodomínio , Nociceptores , Animais , Gânglios Espinais/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mesoderma/metabolismo , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Nociceptores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Front Mol Neurosci ; 14: 720973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646120

RESUMO

PR domain-containing member 12 (PRDM12) is a key developmental transcription factor in sensory neuronal specification and survival. Patients with rare deleterious variants in PRDM12 are born with congenital insensitivity to pain (CIP) due to the complete absence of a subtype of peripheral neurons that detect pain. In this paper, we report two additional CIP cases with a novel homozygous PRDM12 variant. To elucidate the function of PRDM12 during mammalian development and adulthood, we generated temporal and spatial conditional mouse models. We find that PRDM12 is expressed throughout the adult nervous system. We observed that loss of PRDM12 during mid-sensory neurogenesis but not in the adult leads to reduced survival. Comparing cellular biophysical nociceptive properties in developmental and adult-onset PRDM12 deletion mouse models, we find that PRDM12 is necessary for proper nociceptive responses throughout life. However, we find that PRDM12 regulates distinct age-dependent transcriptional programs. Together, our results implicate PRDM12 as a viable therapeutic target for specific pain therapies even in adults.

3.
Eur Neuropsychopharmacol ; 25(11): 2098-107, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26321204

RESUMO

Neuroinflammation is increasingly implicated in the pathogenesis of Schizophrenia (SCZ). In addition, there is increasing evidence for a relationship between the dose and duration of antipsychotic drug (APD) treatment and reductions in grey matter volume. The potential contribution of microglia to these phenomena is however not yet defined. Adult rats were treated with a common vehicle, haloperidol (HAL, 2 mg/kg/day) or olanzapine (OLZ, 10 mg/kg/day) for 8 weeks via an osmotic mini-pump implanted subcutaneously. Microglial cells, identified by their Iba-1 immunoreactivity, were quantified in four regions of interest chosen based on previous neuroimaging data: the hippocampus, anterior cingulate cortex, corpus striatum, and secondary somatosensory cortex. Those cells were also analysed according to their morphology, providing an index of their activation state. Chronic APD treatment resulted in increased density of total microglia in the hippocampus, striatum, and somatosensory cortex, but not in the ACC. Importantly, in all brain regions studied, both APD tested led to a dramatic shift towards an amoeboid, reactive, microglial morphology after chronic treatment compared to vehicle-treated controls. These data provide the first in vivo evidence that chronic APD treatment at clinically relevant doses leads to microglial proliferation and morphological changes indicative of activated microglia in the naïve rat brain. Although caution needs to be exerted when extrapolating results from animals to patients, these data suggest a potential contribution of antipsychotic medication to markers of brain inflammation. Further investigation of the links between antipsychotic treatment and the immune system are warranted.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Haloperidol/farmacologia , Microglia/efeitos dos fármacos , Animais , Antipsicóticos/toxicidade , Benzodiazepinas/toxicidade , Encéfalo/imunologia , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Haloperidol/toxicidade , Imuno-Histoquímica , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/imunologia , Microglia/patologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Olanzapina , Distribuição Aleatória , Ratos Sprague-Dawley
4.
Mol Genet Metab ; 107(1-2): 213-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22704978

RESUMO

PPT1-related neuronal ceroid lipofuscinosis (NCL) is a lysosomal storage disorder caused by deficiency in a soluble lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1). Enzyme replacement therapy (ERT) has not been previously examined in a preclinical animal model. Homozygous PPT1 knockout mice reproduce the known features of the disease, developing signs of motor dysfunction at 5 months of age and death by around 8 months. In the current study, PPT1 knockout mice were treated with purified recombinant PPT1 (0.3 mg, corresponding to 12 mg/kg or 180 U/kg for a 25 g mouse) administered intravenously weekly either 1) from birth; or 2) beginning at 8 weeks of age. The treatment was surprisingly well tolerated and neither anaphylaxis nor antibody formation was observed. In mice treated from birth, survival increased from 236 to 271 days (p<0.001) and the onset of motor deterioration was similarly delayed. In mice treated beginning at 8 weeks, no increases in survival or motor performance were seen. An improvement in neuropathology in the thalamus was seen at 3 months in mice treated from birth, and although this improvement persisted it was attenuated by 7 months. Outside the central nervous system, substantial clearance of autofluorescent storage material in many tissues was observed. Macrophages in spleen, liver and intestine were especially markedly improved, as were acinar cells of the pancreas and tubular cells of the kidney. These findings suggest that ERT may be an option for addressing visceral storage as part of a comprehensive approach to PPT1-related NCL, but more effective delivery methods to target the brain are needed.


Assuntos
Terapia de Reposição de Enzimas , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/mortalidade , Proteínas Recombinantes/administração & dosagem , Tioléster Hidrolases/administração & dosagem , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Tioléster Hidrolases/efeitos adversos , Vísceras/efeitos dos fármacos , Vísceras/metabolismo , Vísceras/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA