Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Birth Defects Res ; 116(3): e2327, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456586

RESUMO

BACKGROUND: Split hand/foot malformation (SHFM) is a congenital limb disorder presenting with limb anomalies, such as missing, hypoplastic, or fused digits, and often craniofacial defects, including a cleft lip/palate, microdontia, micrognathia, or maxillary hypoplasia. We previously identified three novel variants in the transcription factor, PRDM1, that are associated with SHFM phenotypes. One individual also presented with a high arch palate. Studies in vertebrates indicate that PRDM1 is important for development of the skull; however, prior to our study, human variants in PRDM1 had not been associated with craniofacial anomalies. METHODS: Using transient mRNA overexpression assays in prdm1a-/- mutant zebrafish, we tested whether the PRDM1 SHFM variants were functional and could lead to a rescue of the craniofacial defects observed in prdm1a-/- mutants. We also mined previously published CUT&RUN and RNA-seq datasets that sorted EGFP-positive cells from a Tg(Mmu:Prx1-EGFP) transgenic line that labels the pectoral fin, pharyngeal arches, and dorsal part of the head to examine Prdm1a binding and the effect of Prdm1a loss on craniofacial genes. RESULTS: The prdm1a-/- mutants exhibit craniofacial defects including a hypoplastic neurocranium, a loss of posterior ceratobranchial arches, a shorter palatoquadrate, and an inverted ceratohyal. Injection of wildtype (WT) hPRDM1 in prdm1a-/- mutants partially rescues the palatoquadrate phenotype. However, injection of each of the three SHFM variants fails to rescue this skeletal defect. Loss of prdm1a leads to a decreased expression of important craniofacial genes by RNA-seq, including emilin3a, confirmed by hybridization chain reaction expression. Other genes including dlx5a/dlx6a, hand2, sox9b, col2a1a, and hoxb genes are also reduced. Validation by real-time quantitative PCR in the anterior half of zebrafish embryos failed to confirm the expression changes suggesting that the differences are enriched in prx1 expressing cells. CONCLUSION: These data suggest that the three SHFM variants are likely not functional and may be associated with the craniofacial defects observed in the humans. Finally, they demonstrate how Prdm1a can directly bind and regulate genes involved in craniofacial development.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Crânio , Síndrome , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Development ; 150(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390228

RESUMO

The transmembrane proteins cdon and boc are implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration suggest that cdon and boc may play additional functions in regulating directed cell movements. We use newly generated and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon;boc mutant embryos. We further show that this migration phenotype is associated with defects in the differentiation of slow-twitch muscle cells, and the loss of a Col1a1a-containing extracellular matrix, suggesting that neural crest defects may be a secondary consequence to defects in mesoderm development. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and suggest that the zebrafish can be used to study the function of hedgehog receptor paralogs.


Assuntos
Crista Neural , Peixe-Zebra , Animais , Moléculas de Adesão Celular/genética , Diferenciação Celular , Movimento Celular/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Desenvolvimento Muscular/genética , Mutação/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083955

RESUMO

Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.


Assuntos
Deformidades Congênitas dos Membros , Peixe-Zebra , Animais , DNA , Deformidades Congênitas dos Membros/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fatores de Transcrição/genética , Peixe-Zebra/genética , Dedos de Zinco
4.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35132438

RESUMO

Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.


Assuntos
Diferenciação Celular , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Cartilagem/citologia , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína do Locus do Complexo MDS1 e EVI1/deficiência , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Camundongos Knockout , Crista Neural/citologia , Crista Neural/metabolismo , Sequências Reguladoras de Ácido Nucleico , Crânio/citologia , Crânio/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
5.
Methods Mol Biol ; 2293: 163-179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453716

RESUMO

Despite the critical role of Rab GTPases for intracellular transport, the vast majority of proteins within this family remain poorly characterized, including the Rab40 subfamily. Often recognized as atypical Rabs, the Rab40 family of proteins are unlike any other small GTPase because they contain a C-terminal suppressor of cytokine signaling (SOCS) box. It is well established that this SOCS domain in other proteins mediates an interaction with the scaffold protein Cullin5 in order to form a E3 ubiquitin ligase complex critical for protein ubiquitylation and turnover. Although the function of SOCS/Cullin5 complexes has been well defined in several of these other proteins, this is not yet the case for the Rab40 family of proteins. We have previously shown that the Rab40b family member plays an important role during three-dimensional (3D) breast cancer cell migration. To further this knowledge, we began to investigate the SOCS-dependent role of Rab40b during cell migration. Here, we describe an unbiased approach to identify potential Rab40b/Cullin5 substrates. We anticipate that this method will be useful for studying the function of other Rab40 family members as well as other SOCS box containing proteins.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Elife ; 102021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34397384

RESUMO

The neural crest is a migratory population of stem-like cells that contribute to multiple traits including the bones of the skull, peripheral nervous system, and pigment. How neural crest cells differentiate into diverse cell types is a fundamental question in the study of vertebrate biology. Here, we use single-cell RNA sequencing to characterize transcriptional changes associated with neural crest cell development in the zebrafish trunk during the early stages of migration. We show that neural crest cells are transcriptionally diverse and identify pre-migratory populations already expressing genes associated with differentiated derivatives, specifically in the xanthophore lineage. Further, we identify a population of Rohon-Beard neurons in the data. The data presented identify novel genetic markers for multiple trunk neural crest cell populations and Rohon-Beard neurons providing insight into previously uncharacterized genes critical for vertebrate development.


Assuntos
Movimento Celular , Marcadores Genéticos , Crista Neural/fisiologia , Análise de Sequência de RNA , Análise de Célula Única , Peixe-Zebra/embriologia , Animais , Linhagem da Célula , Embrião não Mamífero , Expressão Gênica , Neurônios/fisiologia
7.
Dev Cell ; 56(3): 325-340.e8, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561422

RESUMO

Primary cilia are sensory organelles that utilize the compartmentalization of membrane and cytoplasm to communicate signaling events, and yet, how the formation of a cilium is coordinated with reorganization of the cortical membrane and cytoskeleton is unclear. Using polarized epithelia, we find that cortical actin clearing and apical membrane partitioning occur where the centrosome resides at the cell surface prior to ciliation. RAB19, a previously uncharacterized RAB, associates with the RAB-GAP TBC1D4 and the HOPS-tethering complex to coordinate cortical clearing and ciliary membrane growth, which is essential for ciliogenesis. This RAB19-directed pathway is not exclusive to polarized epithelia, as RAB19 loss in nonpolarized cell types blocks ciliogenesis with a docked ciliary vesicle. Remarkably, inhibiting actomyosin contractility can substitute for the function of the RAB19 complex and restore ciliogenesis in knockout cells. Together, this work provides a mechanistic understanding behind a cytoskeletal clearing and membrane partitioning step required for ciliogenesis.


Assuntos
Membrana Celular/metabolismo , Cílios/metabolismo , Organogênese , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Centrossomo/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase , Humanos , Espaço Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico
8.
J Exp Zool B Mol Dev Evol ; 334(6): 325-338, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32864827

RESUMO

How modification of gene expression generates novel traits is key to understanding the evolutionary process. We investigated the genetic basis for the origin of the piscine gas bladder from lungs of ancestral bony vertebrates. Distinguishing these homologous organs is the direction of budding from the foregut during development; lungs bud ventrally and the gas bladder buds dorsally.


Assuntos
Sacos Aéreos/embriologia , Evolução Biológica , Peixes/embriologia , Microdissecção e Captura a Laser , Pulmão/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Análise de Sequência de RNA , Vertebrados
9.
J Hered ; 111(2): 237-247, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31811714

RESUMO

Understanding the genetic basis for phenotypic differences is fundamental to the study of macroevolutionary patterns of biological diversity. While technological advances in DNA sequencing have made researching genetic variation in wild taxa routine, fully understanding how these variants affect phenotype requires taking the next step to investigate how genetic changes alter cell and tissue interactions that ultimately produce phenotypes. In this article, we investigate a role for cell proliferation as a developmental source of craniofacial diversity in a radiation of 3 species of Cyprinodon from San Salvador Island, Bahamas. Patterns of cell proliferation in the heads of hatching-age fish differ among species of Cyprinodon, and correlate with differences in allometric growth rate among the jaws of 3 distinct species. Regional patterns of cell proliferation in the head are complex, resulting in an unintuitive result in which lower levels of cell proliferation in the posterior head region are associated with the development of relatively larger jaws in one species. We combine these data with previously published morphological and genomic data to show how studying the mechanisms generating phenotype at the cellular and tissue levels of biological organization can help mechanistically link genomic studies with classic morphological studies.


Assuntos
Proliferação de Células , Arcada Osseodentária/citologia , Peixes Listrados/anatomia & histologia , Animais , Bahamas , Regulação da Expressão Gênica no Desenvolvimento , Arcada Osseodentária/anatomia & histologia , Peixes Listrados/classificação , Peixes Listrados/genética , Fenótipo
10.
J Morphol ; 279(11): 1559-1578, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30368863

RESUMO

Using multiple taxa to research development is necessary for making general conclusions about developmental patterns and mechanisms. We present a staging series for Cyprinodon variegatus as a basis for further study of the developmental biology of fishes in the genus Cyprinodon and for comparative work on teleost fishes beyond the standard models. Cyprinodon are small, euryhaline fishes, widely distributed in fresh, brackish, and hypersaline waters of southern and eastern North America. Cyprinodontids are closely related to fundulids, providing a comparative reference point to the embryological model, Fundulus heteroclitus. Ecologists and evolutionary biologists commonly study Cyprinodon, and we have been using Cyprinodon to study skull variation and its genetic basis among closely related species. We divided embryonic development of C. variegatus into 34 morphologically identifiable stages. We reference our staging series to that already defined for a related model species, Oryzias latipes (medaka) that is studied by a large community of researchers. We provide a description of the early chondrogenesis and ossification of skull and caudal fin bones during the latter stages of embryonic development. We show that Cyprinodon are tractable for studying development. Eggs can be obtained easily from breeding pairs and our study provides a staging system to facilitate future developmental studies.


Assuntos
Evolução Biológica , Fenômenos Ecológicos e Ambientais , Peixes Listrados/embriologia , Pesquisa , Nadadeiras de Animais/embriologia , Animais , Embrião não Mamífero/anatomia & histologia , Desenvolvimento Embrionário , Gástrula/embriologia , Peixes Listrados/anatomia & histologia , Modelos Animais , Somitos/embriologia
11.
BMC Genomics ; 18(1): 424, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558659

RESUMO

BACKGROUND: Understanding the genetic and developmental origins of phenotypic novelty is central to the study of biological diversity. In this study we identify modifications to the expression of genes at four developmental stages that may underlie jaw morphological differences among three closely related species of pupfish (genus Cyprinodon) from San Salvador Island, Bahamas. Pupfishes on San Salvador Island are trophically differentiated and include two endemic species that have evolved jaw morphologies unlike that of any other species in the genus Cyprinodon. RESULTS: We find that gene expression differs significantly across recently diverged species of pupfish. Genes such as Bmp4 and calmodulin, previously implicated in jaw diversification in African cichlid fishes and Galapagos finches, were not found to be differentially expressed among species of pupfish. Instead we find multiple growth factors and cytokine/chemokine genes to be differentially expressed among these pupfish taxa. These include both genes and pathways known to affect craniofacial development, such as Wnt signaling, as well as novel genes and pathways not previously implicated in craniofacial development. These data highlight both shared and potentially unique sources of jaw diversity in pupfish and those identified in other evolutionary model systems such as Galapagos finches and African cichlids. CONCLUSIONS: We identify modifications to the expression of genes involved in Wnt signaling, Igf signaling, and the inflammation response as promising avenues for future research. Our project provides insight into the magnitude of gene expression changes contributing to the evolution of morphological novelties, such as jaw structure, in recently diverged pupfish species.


Assuntos
Perfilação da Expressão Gênica , Genômica , Peixes Listrados/anatomia & histologia , Peixes Listrados/genética , Crânio/anatomia & histologia , Animais , Sequência Conservada , Peixes Listrados/classificação , Anotação de Sequência Molecular , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Filogenia
12.
J Morphol ; 277(7): 935-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27103074

RESUMO

To understand the origins of novelty and the evolution of biological diversity, it is important to investigate the processes that generate phenotypic variation from genotypic variation. A number of path-breaking studies have revealed the genetic basis for phenotypic differences between distantly related taxa, but how qualitative change is produced during the early stages of divergence is largely unexplored. Here, we focus on striking differences in jaw morphology exhibited by three closely related sympatric pupfish species (genus Cyprinodon) from San Salvador Island, Bahamas as a basis for investigating the genetic sources of morphological variation in recently diverged species. San Salvador Island pupfish are trophically diverse and display derived jaw morphologies distinct from any other species in the genus. We illustrate these qualitative morphological differences between species with 3D-reconstructed CT-images and camera lucida drawings of the skulls of wild-caught fish. Quantitative data representing the size of individual bony skull elements in wild fish show how qualitatively novel morphologies arise as a consequence of changes to the size and shape of individual skull elements, particularly the dentary, premaxilla, and maxilla bones associated with the oral jaws. Consistent with these comparative data is that the growth rate of individual bony skull elements, measured on a developmental time series of lab-reared fish, differs between species. Our data provide a critical foundation for future studies developing San Salvador Cyprinodon pupfishes as a model system to understand the evolution and development of novel morphologies at the species level. J. Morphol. 277:935-947, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Peixes Listrados/anatomia & histologia , Desenvolvimento Maxilofacial , Animais , Peixes Listrados/genética , Peixes Listrados/crescimento & desenvolvimento , Simpatria
13.
BMC Ecol ; 13: 18, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23641898

RESUMO

BACKGROUND: Environmental temperature has profound consequences for early amphibian development and many field and laboratory studies have examined this. Most laboratory studies that have characterized the influence of temperature on development in amphibians have failed to incorporate the realities of diel temperature fluctuations (DTF), which can be considerable for pond-breeding amphibians. RESULTS: We evaluated the effects of different ecologically relevant ranges of DTF compared with effects of constant temperatures on development of embryos and larvae of the Korean fire-bellied toad (Bombina orientalis). We constructed thermal reaction norms for developmental stage, snout-vent length, and tail length by fitting a Gompertz-Gaussian function to measurements taken from embryos after 66 hours of development in 12 different constant temperature environments between 14°C and 36°C. We used these reaction norms as null models to test the hypothesis that developmental effects of DTF are more than the sum of average constant temperature effects over the distribution of temperatures experienced. We predicted from these models that growth and differentiation would be positively correlated with average temperature at low levels of DTF but not at higher levels of DTF. We tested our prediction in the laboratory by rearing B. orientalis embryos at three average temperatures (20°C, 24°C, and 28°C) and four levels of thermal variation (0°C, 6°C, 13°C, and 20°C). Several of the observed responses to DTF were significantly different from both predictions of the model and from responses in constant temperature treatments at the same average temperatures. At an average temperature of 24°C, only the highest level of DTF affected differentiation and growth rates, but at both cooler and warmer average temperatures, moderate DTF was enough to slow developmental and tail growth rates. CONCLUSIONS: These results demonstrate that both the magnitude of DTF range and thermal averages need to be considered simultaneously when parsing the effects of changing thermal environments on complex developmental responses, particularly when they have potential functional and adaptive significance.


Assuntos
Anuros/embriologia , Ecossistema , Animais , Anuros/anatomia & histologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA