Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4834, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844446

RESUMO

Oceanic eddies are recognized as pivotal components in marine ecosystems, believed to concentrate a wide range of marine life spanning from phytoplankton to top predators. Previous studies have posited that marine predators are drawn to these eddies due to an aggregation of their forage fauna. In this study, we examine the response of forage fauna, detected by shipboard acoustics, across a broad sample of a thousand eddies across the world's oceans. While our findings show an impact of eddies on surface temperatures and phytoplankton in most cases, they reveal that only a minority (13%) exhibit significant effects on forage fauna, with only 6% demonstrating an oasis effect. We also show that an oasis effect can occur both in anticyclonic and cyclonic eddies, and that the few high-impact eddies are marked by high eddy amplitude and strong water-mass-trapping. Our study underscores the nuanced and complex nature of the aggregating role of oceanic eddies, highlighting the need for further research to elucidate how these structures attract marine predators.


Assuntos
Ecossistema , Oceanos e Mares , Fitoplâncton , Animais , Fitoplâncton/fisiologia , Temperatura , Organismos Aquáticos/fisiologia , Comportamento Predatório/fisiologia , Acústica
2.
Sci Rep ; 14(1): 2457, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291103

RESUMO

El Niño-Southern Oscillation (ENSO) teleconnections are an important predictability source for extratropical seasonal climate forecasts. Previous studies suggest that the ENSO teleconnection pattern depends on the ENSO phase (El Niño vs. La Niña) and/or Sea Surface Temperature (SST) pattern (central Pacific vs. eastern Pacific El Niño events). Observations and ensemble simulations with the CNRM-CM6.1 atmospheric general circulation model indicate that only extreme El Niño events (e.g. 1982-1983, 1997-1998, 2015-2016) display a statistically significant eastward shift relative to the well-known Pacific-North American teleconnection pattern that occurs during both central and eastern Pacific moderate El Niño or during La Niña. This specific teleconnection pattern emerges when equatorial SST anomalies are both eastward-shifted and sufficiently large to exceed the deep atmospheric convection threshold over most of the eastern Pacific, resulting in a basin-wide reorganization of tropospheric heat sources. It yields> 0.5 std wet conditions over Western United States (74% likelihood) as well as> 0.5 std warm anomalies over Canada and the Northern United States (71% likelihood), with more consistency across events and ensemble members than for any other El Niño or La Niña type. These findings hold important implications for the seasonal forecasting of El Niño's impacts on the North American climate.

3.
Science ; 374(6563): eaay9165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591645

RESUMO

Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño­Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. "Decadal," which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.

4.
Science ; 363(6430)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819937

RESUMO

The El Niño-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.

6.
Nature ; 559(7715): 535-545, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046070

RESUMO

El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.


Assuntos
El Niño Oscilação Sul , Mudança Climática , Clima Tropical , Movimentos da Água
7.
Nat Commun ; 9(1): 855, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472556

RESUMO

The original version of this Article omitted a reference to previous work in 'Mann, M.E., Cane, M.A., Zebiak, S.E., Clement, A., Volcanic and Solar Forcing of the Tropical Pacific Over the Past 1000 Years, J. Climate 18, 447-456 (2005)'. This has been added as reference 62 at the end of the fourth sentence of the fourth paragraph of the Introduction: 'Early studies using simple coupled ocean-atmosphere models26 proposed that following volcano-induced surface cooling, upwelling in the eastern equatorial Pacific acting on a reduced vertical temperature contrast between the ocean surface and interior leads to anomalous warming in this region, thereby favouring El Niño development the following year12, 27, 62.' This has been corrected in the PDF and HTML versions of the Article.

9.
Nat Commun ; 8(1): 778, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974676

RESUMO

Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism. Here we show that an El Niño tends to peak during the year following large eruptions in simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). Targeted climate model simulations further emphasize that Pinatubo-like eruptions tend to shorten La Niñas, lengthen El Niños and induce anomalous warming when occurring during neutral states. Volcanically induced cooling in tropical Africa weakens the West African monsoon, and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over the western Pacific. This wind anomaly is further amplified by air-sea interactions in the Pacific, favouring an El Niño-like response.El Niño tends to follow 2 years after volcanic eruptions, but the physical mechanism behind this phenomenon is unclear. Here the authors use model simulations to show that a Pinatubo-like eruption cools tropical Africa and drives westerly wind anomalies in the Pacific favouring an El Niño response.

10.
Glob Chang Biol ; 21(1): 195-205, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25088977

RESUMO

Coral reefs and lagoons worldwide are vulnerable environments. However, specific geomorphological reef types (fringing, barrier, atoll, bank for the main ones) can be vulnerable to specific disturbances that will not affect most other reefs. This has implications for local management and science priorities. Several geomorphologically closed atolls of the Pacific Ocean have experienced in recent decades mass benthic and pelagic lagoonal life mortalities, likely triggered by unusually calm weather conditions lasting for several weeks. These events, although poorly known, reported, and characterized, pose a major threat for resource sustainability. Based on a sample of eleven events on eight atolls from the central South Pacific occurring between 1993 and 2012, the conservative environmental thresholds required to trigger such events are identified using sea surface temperature, significant wave height and wind stress satellite data. Using these thresholds, spatial maps of potential risk are produced for the central South Pacific region, with the highest risk zone lying north of Tuamotu Archipelago. A regional climate model, which risk map compares well with observations over the recent period (r=0.97), is then used to downscale the projected future climate. This allows us to estimate the potential change in risk by the end of the 21st century and highlights a relative risk increase of up to 60% for the eastern Tuamotu atolls. However, the small sample size used to train the analysis led to the identification of conservative thresholds that overestimated the observed risk. The results of this study suggest that long-term monitoring of the biophysical conditions of the lagoons at risk would enable more precise identification of the physical thresholds and better understanding of the biological processes involved in these rare, but consequential, mass mortality events.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Animais , Bivalves/fisiologia , Clima , Ecossistema , Peixes/fisiologia , Modelos Teóricos , Mortalidade , Ilhas do Pacífico , Oceano Pacífico , Temperatura , Movimentos da Água , Poluição da Água/estatística & dados numéricos , Tempo (Meteorologia) , Vento
11.
ScientificWorldJournal ; 2012: 612048, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23213290

RESUMO

This study investigated the seasonality of tropical instability waves (TIWs) and its feedback to the seasonal cycle in the tropical eastern Pacific using a high-resolution ocean model covering 1958-2007. The climatological mean of the TIWs featured intraseasonal fluctuations, implying that TIWs are not occurring randomly, but their amplitude is partly in phase from one year to another. This seasonality of TIW activity is attributed to their dependency on the seasonal mean variation of current and temperature. Energy conversion analysis confirmed that the strong variability of TIWs near 4°N was due to the barotropic energy conversion associated with the large meridional shear of NECC and SEC and that at another pole near 2°N was due to the baroclinic energy conversion associated with the temperature front in the mixed layer. The former and latter poles are somehow largely responsible for amplifying the dynamic and thermal eddies of TIWs, respectively. The intensified TIWs during a boreal fall increase the tropical eastern Pacific SST by associating the warm thermal advection by anomalous currents, with a rate of up to 1°C/month in September. Therefore, this leads to interactive feedback between seasonal and intraseasonal variations, that is, TIWs in the tropical eastern Pacific.


Assuntos
Algoritmos , Modelos Estatísticos , Estações do Ano , Clima Tropical , Movimentos da Água , Simulação por Computador , Retroalimentação , Oceano Pacífico
12.
Nature ; 488(7411): 365-9, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22895343

RESUMO

The South Pacific convergence zone (SPCZ) is the Southern Hemisphere's most expansive and persistent rain band, extending from the equatorial western Pacific Ocean southeastward towards French Polynesia. Owing to its strong rainfall gradient, a small displacement in the position of the SPCZ causes drastic changes to hydroclimatic conditions and the frequency of extreme weather events--such as droughts, floods and tropical cyclones--experienced by vulnerable island countries in the region. The SPCZ position varies from its climatological mean location with the El Niño/Southern Oscillation (ENSO), moving a few degrees northward during moderate El Niño events and southward during La Niña events. During strong El Niño events, however, the SPCZ undergoes an extreme swing--by up to ten degrees of latitude toward the Equator--and collapses to a more zonally oriented structure with commensurately severe weather impacts. Understanding changes in the characteristics of the SPCZ in a changing climate is therefore of broad scientific and socioeconomic interest. Here we present climate modelling evidence for a near doubling in the occurrences of zonal SPCZ events between the periods 1891-1990 and 1991-2090 in response to greenhouse warming, even in the absence of a consensus on how ENSO will change. We estimate the increase in zonal SPCZ events from an aggregation of the climate models in the Coupled Model Intercomparison Project phases 3 and 5 (CMIP3 and CMIP5) multi-model database that are able to simulate such events. The change is caused by a projected enhanced equatorial warming in the Pacific and may lead to more frequent occurrences of extreme events across the Pacific island nations most affected by zonal SPCZ events.


Assuntos
Aquecimento Global/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Bases de Dados Factuais , El Niño Oscilação Sul/história , Aquecimento Global/economia , Aquecimento Global/história , Efeito Estufa/economia , Efeito Estufa/história , História do Século XIX , História do Século XX , História do Século XXI , Modelos Teóricos , Oceano Pacífico , Chuva , Fatores Socioeconômicos
13.
PLoS Negl Trop Dis ; 6(2): e1470, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348154

RESUMO

BACKGROUND: Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an early warning system. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March-April) lagged the warmest temperature by 1-2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January-February-March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October-November-December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively. CONCLUSIONS/SIGNIFICANCE: The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue management in other countries.


Assuntos
Aedes/crescimento & desenvolvimento , Clima , Dengue/epidemiologia , Surtos de Doenças , Animais , Vetores de Doenças , Feminino , Humanos , Umidade , Modelos Estatísticos , Nova Caledônia/epidemiologia , Chuva , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA