Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(28): 8540-8552, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256172

RESUMO

We report here the first implementation of chemically specific imaging in the exhaust plume of a gas turbine typical of those used for propulsion in commercial aircraft. The method used is chemical species tomography (CST) and the target species is CO2, absorbing in the near-infrared at 1999.4 nm. A total of 126 beams propagate transverse to the plume axis, along 7 m paths in a coplanar geometry, to probe a central region of diameter ≈1.5m. The CO2 absorption spectrum is measured using tunable diode laser spectroscopy with wavelength modulation, using the second harmonic to first harmonic (2f/1f) ratio method. The engine is operated over the full range of thrust, while data are recorded in a quasi-simultaneous mode at frame rates of 1.25 and 0.3125 Hz. Various data inversion methodologies are considered and presented for image reconstruction. At all thrust levels a persistent ring structure of high CO2 concentration is observed in the central region of the measurement plane, with a raised region in the middle of the plume assumed to be due to the engine's boat tail. With its potential to target various exhaust species, the CST method outlined here offers a new approach to turbine combustion research, turbine engine development, and aviation fuel research and development.

2.
Appl Opt ; 57(7): B1-B9, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522029

RESUMO

We consider the inverse problem of concentration imaging in optical absorption tomography with limited data sets. The measurement setup involves simultaneous acquisition of near-infrared wavelength-modulated spectroscopic measurements from a small number of pencil beams equally distributed among six projection angles surrounding the plume. We develop an approach for image reconstruction that involves constraining the value of the image to the conventional concentration bounds and a projection into low-dimensional subspaces to reduce the degrees of freedom in the inverse problem. Effectively, by reparameterizing the forward model, we impose, simultaneously, spatial smoothness and a choice among three types of inequality constraints, namely, positivity, boundedness, and logarithmic boundedness in a simple way that yields an unconstrained optimization problem in a new set of surrogate parameters. Testing this numerical scheme with simulated and experimental phantom data indicates that the combination of affine inequality constraints and subspace projection leads to images that are qualitatively and quantitatively superior to unconstrained regularized reconstructions. This improvement is more profound in targeting concentration profiles of small spatial variation. We present images and convergence graphs from solving these inverse problems using Gauss-Newton's algorithm to demonstrate the performance and convergence of our method.

3.
Opt Lett ; 39(16): 4796-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121877

RESUMO

A new methodology for the development of miniature photoacoustic trace gas sensors using 3D printing is presented. A near-infrared distributed feedback (DFB) laser is used together with a polymer-based gas cell, off-the-shelf fiber optic collimators, and a microelectromechanical system (MEMS) microphone to measure acetylene at 1532.83 nm. The resonance behavior of the miniature gas cell is analyzed using a theoretical and experimental approach, with a measured resonance frequency of 15.25 kHz and a Q-factor of 15. A minimum normalized noise equivalent absorption of 4.5×10(-9) W cm(-1) Hz(-1/2) is shown together with a 3σ detection limit of 750 parts per billion (ppb) for signal averaging times of 35 s. The fiber-coupled delivery and miniature cost-effective cell design allows for use in multipoint and remote detection applications.

4.
Opt Express ; 17(12): 9602-7, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19506608

RESUMO

A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.


Assuntos
Artefatos , Tecnologia de Fibra Óptica/instrumentação , Lasers Semicondutores , Análise Espectral/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA