RESUMO
Hydroxy-substituted tetrachlorodibenzo[b,e][1,4]dioxin and tetrachlorodibenzo[b,d]furans have been synthesized using 3,4-dichloroanisole, 2,3,6-trichlorophenol and 4,5-dichlorocatechol as starting materials and electrophilic and/or nucleophilic aromatic substitution reactions for the assembly of the dibenzo[b,e][1,4]dioxin and dibenzo[b,d]furan systems. The thus-obtained phenolic compounds were then alkylated with N-1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde)-protected 3-bromopropan-1-amine to give the corresponding N-Dde protected 3-aminopropoxy-substituted tetrachlorodibenzo[b,e][1,4]dioxin and tetrachlorodibenzo[b,d]furans, respectively. Hydrazinolysis-mediated Dde removal from the former compound provided the corresponding amino-substituted dioxin, which was coupled to carboxy-substituted magnetic beads affording magnetic beads coated by the amino-substituted dioxin. The latter is an attractive intermediate for the development of selective single-standard DNA (ssDNA) aptamers, which constitute molecular recognition elements in photonic biosensors with potential application to the monitoring of the dangerous environmental pollutants, dioxins having serious implications in human health.
RESUMO
Βradykinin stimulation of B2 receptor is known to activate the oncogenic ERK pathway and overexpression of bradykinin receptors B1 and B2 has been reported to occur in glioma, colorectal and cervical cancers. B1R and B2R antagonists have been shown to reverse tumor proliferation and invasion. Paradoxically, B1R and B2R agonism has also been reported to elicit antiproliferative benefits. In order to complement the data accumulated to date with the natural substrate bradykinin and peptidic B2R antagonists, we decided to examine for the first time the response elicited by B2R stimulation in breast cancer lines with a non-peptidic small molecule B2R agonist. We synthesized and assessed the highly selective and potent B2R partial agonist FR-190997 in MCF-7 and MDA-MBA-231 breast cancer lines and found it possessed significant antiproliferative activity (IC50 2.14 and 0.08 µΜ, respectively). The modular nature of FR-190997 allowed us to conduct a focused SAR study and discover compound 10 which exhibits subnanomolar antiproliferative activity (IC 50 0.06 nΜ) in the TNBC MDA-MBA-231 cell line. This performance surpasses, in most cases by several orders of magnitude, those of established anticancer agents and FDA-approved breast cancer drugs. In line with the established literature we suggest that this remarkable activity precipitates from a dual mode of action involving agonist-induced receptor internalization/degradation combined with sequestration of functional intracellular B2 receptors and inhibition of the associated endosomal signaling. The latter mode may be realized by appropriate ligands regardless of B2R agonist/antagonist designation which only relates to membrane residing GCPRs. Under this prism the controversy over the antiproliferative effects of B2 agonists and antagonists is potentially neutralized.