Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(32): 22424-22430, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087940

RESUMO

Amide alkylation is a fundamental process in organic chemistry. However, the low nucleophilicity of amides means that divergent coupling with alkyl electrophiles is often not achievable. To circumvent this reactivity challenge, individual amine synthesis followed by amidation with standard coupling agents is generally required. Herein, we demonstrate a radical solution to this challenge by using an amine-borane complex and copper catalysis under oxidative conditions. While borohydride reagents are generally used as reducing agents in ionic chemistry, their conversion into amine-ligated boryl radicals diverts their reactivity toward halogen-atom transfer. This enables the conversion of alkyl halides into the corresponding alkyl radicals for amide functionalization via copper catalysis. The process is applicable to the N-alkylation of primary amides employing unactivated alkyl iodides and bromides, and it was also showcased in the late-state functionalization of both complex amide- and halide-containing drugs.

2.
J Am Chem Soc ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137918

RESUMO

Alkyl organoborons are powerful materials for the construction of C(sp3)-C(sp2) bonds, predominantly via Suzuki-Miyaura cross-coupling. These species are generally assembled using 2-electron processes that harness the ability of boron reagents to act as both electrophiles and nucleophiles. Herein, we demonstrate an alternative borylation strategy based on the reactivity of amine-ligated boryl radicals. This process features the use of a carboxylic acid containing amine-ligated borane that acts as boryl radical precursor for photoredox oxidation and decarboxylation. The resulting amine-ligated boryl radical undergoes facile addition to styrenes and imines through radical-polar crossover manifolds. This delivers a new class of sp3-organoborons that are stable solids and do not undergo protodeboronation. These novel materials include unprotected α-amino derivatives that are generally unstable. Crucially, these aliphatic organoboron species can be directly engaged in Suzuki-Miyaura cross-couplings with structurally complex aryl halides. Preliminary studies suggest that they enable slow-release of the corresponding and often difficult to handle alkyl boronic acids.

3.
Org Lett ; 26(18): 3972-3976, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38663015

RESUMO

Facile access to sp3-rich scaffolds containing a sulfonyl fluoride group is still limited. Herein, we describe a mild and scalable strategy for the preparation of alkyl sulfonyl fluorides from readily available alkyl bromides and alcohols using photoredox catalysis. This approach is based on halogen atom transfer (XAT), followed by SO2 capture and fluorination. The method features mild conditions enabling fast access to high-value derivatives and has been scaled up to 5 g using a continuous stirred tank reactor cascade.

4.
Nat Chem ; 16(5): 771-779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273027

RESUMO

The synthesis of functionalized nitrogen heterocycles is integral to discovering, manufacturing and evolving high-value materials. The availability of effective strategies for heterocycle synthesis often biases the frequency of specific ring systems over others in the core structures of bioactive leads. For example, while the six- and five-membered piperidine and pyrrolidine are widespread in medicinal chemistry libraries, the seven-membered azepane is essentially absent and this leaves open a substantial area of three-dimensional chemical space. Here we report a strategy to prepare complex azepanes from simple nitroarenes by photochemical dearomative ring expansion centred on the conversion of the nitro group into a singlet nitrene. This process is mediated by blue light, occurs at room temperature and transforms the six-membered benzenoid framework into a seven-membered ring system. A following hydrogenolysis provides the azepanes in just two steps. We have demonstrated the utility of the strategy with the synthesis of several azepane analogues of piperidine drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA