Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 131(5): 737-750, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36273331

RESUMO

BACKGROUND AND AIMS: The hart's tongue fern (HTF) complex is a monophyletic group composed of five geographically segregated members with divergent abundance patterns across its broad geographic range. We postulated hierarchical systems of environmental controls in which climatic and land-use change drive abundance patterns at the global scale, while various ecological conditions function as finer scale determinants that further increase geographic disparities at regional to local scales. METHODS: After quantifying the abundance patterns of the HTF complex, we estimated their correlations with global climate and land-use dynamics. Regional determinants were assessed using boosted regression tree models with 18 potential ecological variables. Moreover, we investigated long-term population trends in the USA to understand the interplay of climate change and anthropogenic activities on a temporal scale. KEY RESULTS: Latitudinal climate shifts drove latitudinal abundance gradients, and regionally different levels of land-use change resulted in global geographic disparities in population abundance. At a regional scale, population isolation, which accounts for rescue effects, played an important role, particularly in Europe and East Asia where several hot spots occurred. Furthermore, the variables most strongly influencing abundance patterns greatly differed by region: precipitation seasonality in Europe; spatial heterogeneity of temperature and precipitation in East Asia; and magnitudes of past climate change, temperature seasonality and edaphic conditions in North America. In the USA, protected populations showed increasing trends compared with unprotected populations at the same latitude, highlighting the critical role of habitat protection in conservation measures. CONCLUSIONS: Geographic disparities in the abundance patterns of the HTF complex were determined by hierarchical systems of environmental controls, wherein climatic and land-use dynamics act globally but are modulated by various regional and local determinants operating at increasingly finer scales. We highlighted that fern conservation must be tailored to particular geographic contexts and environmental conditions by incorporating a better understanding of the dynamics acting at different spatiotemporal scales.


Assuntos
Gleiquênias , Ecossistema , Mudança Climática , Temperatura , Ásia Oriental
2.
Oecologia ; 196(4): 1233-1245, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34331105

RESUMO

Species range limits often reflect niche limits, especially for ranges constrained along elevational gradients. In this study, we used elevational transplant experiments to test niche breadth and functional trait plasticity in early life stages of narrow-range Nabalus boottii and broad-range N. trifoliolatus plants to assess their climate change vulnerability and the applicability of the niche breadth-range size hypothesis to explain their range size differences. We discovered that the earliest life stage (seed germination) was the most vulnerable and the two alpine taxa, N. boottii and N. trifoliolatus var. nanus, were unable to establish at the warm low elevation site, however non-alpine N. trifoliolatus established at all three elevations, including at the high elevation (beyond-range) site. Niche limits in seed emergence may therefore contribute to range size in these taxa. In contrast, when seedlings were planted we found substantial functional trait plasticity in later life stages (average 44% across ten traits) that was highly similar for all Nabalus taxa, suggesting that differences in plasticity do not generate niche differences or restrict range size in the focal taxa. While this substantial plasticity may help buffer populations faced by climate change, the inability of the alpine taxa to establish at lower elevation sites suggests that their populations may still decline due to decreased seed recruitment under ongoing climate change. We therefore recommend monitoring alpine Nabalus populations, particularly globally rare N. boottii.


Assuntos
Asteraceae , Mudança Climática , Plântula , Sementes
3.
Ecol Evol ; 9(20): 11742-11751, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695884

RESUMO

Coastal resilience is threatened as storm-induced disturbances become more frequent and intense with anticipated changes in regional climate. After severe storms, rapid recovery of vegetation, especially that of dune-stabilizing plants, is a fundamental property of coastal resilience. Herbivores may affect resilience by foraging and trampling in disturbed areas. Consequently, assessing the impacts of herbivores on recovering vegetation is important for coastal land management.We combined imagery classification, wildlife monitoring, and trend analysis to investigate effects of white-tailed deer on recovery rates of vegetation four years poststorm in nine overwashed areas. We estimated local deer density with trail cameras, how it relates to an index of primary productivity, and assessed the relationship between deer density and rates of vegetation recovery in overwash fans.Prestorm vegetation cover consisted of shrubs and sporadic patches of beach grass. Poststorm cover was dominated by beach grass. At current rates, vegetation coverage will return to prestorm conditions within the decade, though community transition from grasses to shrubs will take much longer and will vary by site with dune formation.The effect of deer on rates of vegetation recovery was negative, but not statistically significant nor biologically compelling. Although effects of deer trampling on beach grass are evident in classified imagery, deer foraging on beach grass had little effect on its rate of spread throughout overwash fans.While the rate of spread of the primary dune-building grass was not deleteriously affected by deer, locally high deer densities will likely affect the future establishment and development of herbs and shrubs, which are generally more palatable to deer than beach grass.

4.
AoB Plants ; 11(5): plz059, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33014323

RESUMO

We documented the impacts of an abundant deer population on dune vegetation recovering from severe storm surge on a barrier island through use of permanent plots and a repeated measures analysis. Three years after landfall of the storm, vegetation cover was dominated by American beachgrass, Ammophila breviligulata, though we observed 12 plant species among plots surveyed. We documented significantly greater vegetation cover in fenced than unfenced plots in overwash fans in two consecutive years. The difference in species richness between fenced and unfenced plots was significant, though richness was consistently low (≤4 species per plot) and we did not detect a statistically significant difference between years. Both deer trampling and foraging effects were captured in this study, though separation between these effects was not possible. Because trampling effects are often exacerbated on sandy soils, trampling and foraging effects should be isolated and investigated in future assessments of deer impacts on coastal vegetation. Managing deer to lower abundance may enhance coastal resilience if vegetation is allowed to recover unimpeded by foraging and trampling, though a better understanding of the precise nature of deer impacts on dune vegetation is necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA