Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 138(10): 2833-9, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23462822

RESUMO

Neurotransmission is a key process of communication between neurons. Although much is known about this process and the influence it has on the function of the body, little is understood about the dynamics of signalling from structural regions of a single neuron. In this study we have fabricated and characterised a microelectrode array (MEA) which was utilised for simultaneous multi-site recordings of dopamine release from an isolated single neuron. The MEA consisted of gold electrodes that were created in plane with the insulation layer using a chemical mechanical planarization process. The detection limit for dopamine measurements was 11 ± 3 nM and all the gold electrodes performed in a consistent fashion during amperometric recordings of 100 nM dopamine. Fouling of the gold electrode was investigated, where no significant change in the current was observed over 4 hours when monitoring 100 nM dopamine. The MEA was accessed using freshly isolated dopaminergic somas from the pond snail, Lymnaea stagnalis, where electrically evoked dopamine release was clearly observed. Measurements were conducted at four structural locations of a single isolated neuron, where electrically evoked dopamine release was observed from the cell body, axonal regions and the terminal. Over time, the release of dopamine varied over the structural regions of the neuron. Such information can provide an insight into the signalling mechanism of neurons and how they potentially form synaptic connections.


Assuntos
Dopamina/análise , Dopamina/metabolismo , Potenciais Evocados , Neurônios/metabolismo , Animais , Estimulação Elétrica , Eletrodos , Ouro/química , Lymnaea/citologia , Lymnaea/metabolismo , Microeletrodos , Neurônios/citologia , Transdução de Sinais
2.
Lab Chip ; 9(15): 2238-44, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19606303

RESUMO

An electrochemical microfluidic device has been fabricated on PET (polyethylene terephthalate) substrate using an imprinting method. The imprinting transfers patterns from a stamp into a substrate mechanically. However, a blanket mould imprinting process has been introduced to embed the photolithographically produced gold metal electrode lines into the PET substrate resulting in an individually addressable array flush to better than 100 nm. The device formed one wall of a packed chromatography column. The array was electrochemically characterised using standard redox probes in both stagnant conditions and under flow. Both numerical modelling and experimental data show improved sensitivity under flow and a limiting current which scaled linearly with the cube root of the volume flow rate. A chromatographic separation of the bioanalytical significant neurotransmitter dopamine (DA) and its metabolite DOPAC was achieved and electrochemically detected at multiple locations within the column. The PET device was stable and robust to leaks to pressures well in excess of those required for chromatographic separations.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Ácido 3,4-Di-Hidroxifenilacético/isolamento & purificação , Dopamina/isolamento & purificação , Eletrodos , Desenho de Equipamento , Polietilenotereftalatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA