Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 14(1): 14213, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902351

RESUMO

137Cs is a long-lived man-made radionuclide introduced in the environment worldwide at the early beginning of the nuclear Era during atmospheric nuclear testing's followed by the civil use of nuclear energy. Atmospheric fallout deposition of this major artificial radionuclide was reconstructed at the scale of French large river basins since 1945, and trajectories in French nuclearized rivers were established using sediment coring. Our results show that 137Cs contents in sediments of the studied rivers display a large spatial and temporal variability in response to the various anthropogenic pressures exerted on their catchment. The Loire, Rhone, and Rhine rivers were the most affected by atmospheric fallout from the global deposition from nuclear tests. Rhine and Rhone also received significant fallout from the Chernobyl accident in 1986 and recorded significant 137Cs concentrations in their sediments over the 1970-1985 period due to the regulatory releases from the nuclear industries. The Meuse River was notably impacted in the early 1970s by industrial releases. In contrast, the Seine River display the lowest 137Cs concentrations regardless of the period. All the rivers responded similarly over time to atmospheric fallout on their catchment, underlying a rather homogeneous resilience capacity of these river systems to this source of contamination.

2.
Sci Rep ; 13(1): 21369, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049457

RESUMO

We present a numerically-optimized multipulse framework for the quantum control of a single-electron double quantum dot qubit. Our framework defines a set of pulse sequences, necessary for the manipulation of the ideal qubit basis, that avoids errors associated with excitations outside the computational subspace. A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation. This basis generates spatially localized logical qubit states, making readout straightforward. We consider experimentally realistic semiconductor qubits with finite pulse rise and fall times and determine the fastest pulse sequence yielding the highest fidelity. We show that our protocol leads to improved control of a qubit. We present simulations of a double quantum dot in a semiconductor device to visualize and verify our protocol. These results can be generalized to other physical systems since they depend only on pulse rise and fall times and the energy gap between the two lowest eigenstates.

3.
J Environ Radioact ; 270: 107294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716314

RESUMO

Cesium-137, discharged by nuclear installations under normal operations and deposited in watersheds following atmospheric testing and accidents (i.e. Chernobyl, Fukushima …), has been studied for decades. Thus, modelling of 137Cs concentration in rivers have been developed based on geochemical approaches and equilibrium assumptions (solid/liquid ratio) as this radionuclide has moved into rivers and oceans due to soil erosion. Recently a new approach is possible to model these concentrations with the popularization of data-driven models based on data acquired in the environment by monitoring networks. In this study, the concentrations of particulate cesium-137 measured near the mouth of the Rhône River (France), a highly nuclearized river, are simulated using two data-driven models, a Hierarchical Attention-Based Recurrent Highway Networks (HRHN) and a Random Forest Regressor (RF). The data-driven predictions were done using only hydrological data (water discharge and suspended solid fluxes) and industrial input of 137Cs. Although the data-driven models provided a better prediction than a recent empirical model, the best prediction (R2 = 0.71) was obtained with HRHN, a model that considers the temporal aspect of the monitoring data. The most important predictors were the hydrological data at the monitoring station and of the tributary that generate the most sediment flux (Durance River). In fact, the concentration of 137Cs in the perimeter of this study was more related to hydrology than to nuclear release, as there were few events with high 137Cs concentrations (concomitant nuclear release and low water discharge). However, the HRHN approach, which is more complex to implement than RF, can predict the concentrations of such events correctly despite their low representation of these events. The results of this study demonstrate the usefulness of data-driven models to assist monitoring programs by filling in gaps or helping to understand observed concentrations.


Assuntos
Aprendizado Profundo , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Poluentes Radioativos da Água/análise , Rios , Radioisótopos de Césio/análise , Poeira , Aprendizado de Máquina , Água , Japão
4.
Chemosphere ; 307(Pt 1): 135658, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35835235

RESUMO

A broad range of contaminants has been recorded in sediments of the Loire River over the last century. Among a variety of anthropogenic activities of this nuclearized watershed, extraction of uranium and associated activities during more than 50 years as well as operation of several nuclear power plants led to industrial discharges, which could persist for decades in sedimentary archives of the Loire River. Highlighting and identifying the origin of radionuclides that transited during the last decades and were recorded in the sediments is challenging due to i) the low concentrations which are often close or below the detection limits of routine environmental surveys and ii) the mixing of different sources. The determination of the sources of anthropogenic radioactivity was performed using multi-isotopic fingerprints (236U/238U, 206Pb/207Pb and 208Pb/207Pb) and the newly developed 233U/236U tracer. For the first time 233U/236U data in a well-dated river sediment core in the French river Loire are reported here. Results highlight potential sources of contamination among which a clear signature of anthropogenic inputs related to two accidents of a former NUGG NPP that occurred in 1969 and 1980. The 233U and 236U isotopes were measured by recent high performance analytical methods due to their ultra-trace levels in the samples and show a negligible radiological impact on health and on the environment. The determination of mining activities by the use of stable Pb isotopes is still challenging probably owing to the limited dissemination of the Pb-bearing material marked by the U-ore signature downstream to the former U mines.


Assuntos
Sedimentos Geológicos , Urânio , Monitoramento Ambiental , Isótopos/análise , Chumbo
5.
Water Res ; 220: 118652, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709598

RESUMO

Within the framework of the Rhône Sediment Observatory, monthly time-integrated samples have been collected by Particle Traps in the last decade to monitor particulate contaminants in the Rhône River and its main tributaries. In this watershed with a contrasted hydrology, a clustering approach is used to classify the samples according to the main hydrological events. This approach has been applied to riverine particulate organic radiocarbon signatures (Δ14C-POC) that are strongly affected by the origin of the material and the occurrence of nuclear power plant releases. Suspended Particulate Matter (SPM) samples were collected near the outlet of the Rhône River and analysed for 14C along with particulate organic carbon (POC), chlorophyll a and tritium contents to confirm Δ14C-POC origins. Cluster Analysis, coupled to Principal Component Analysis, was performed based on monthly average water discharges of the Upper Rhône River and the five main tributaries. The classification obtained by fuzzy C-mean logic of the Rhône River hydrology into 5 clusters is similar to that already observed in the literature with Mediterranean/Cevenol flood, oceanic pluvial flood, nival flood, low-water level and baseflow clusters. The contributions of each cluster among the Δ14C-POC values demonstrate the complexity of hydrological classification of time-integrated samples. First, the samples with a unique and significantly dominant cluster are easily explained with negative Δ14C-POC values observed in the flood clusters due to input of 14C-depleted material from soil or rock weathering, and positive values observed in the low-water level and baseflow clusters due to anthropogenic input by nuclear industry. Second, samples that present a homogeneous mixture between several clusters demonstrate the occurrence of different hydrological events during the sampling periods. This tool appears as a solution to estimate the contribution of each hydrological event in time-integrated samples.


Assuntos
Carbono , Rios , Carbono/análise , Clorofila A/análise , Análise por Conglomerados , Poeira/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise , Hidrologia , Água/análise
6.
Sci Total Environ ; 806(Pt 4): 150890, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666084

RESUMO

As carriers of dissolved and particulate loads that connect continental surfaces to oceans, river systems play a major role in the global carbon cycle. Indeed, riverine particulate organic carbon (POC) is a melange of various origins characterized by their own 14C labeling. In addition, civil nuclear activities have brought new 14C source that remains poorly documented. We propose to unravel the Δ14C value of POC stored in a sedimentary archive collected downstream the most nuclearized European rivers (the Loire River). We postulate that riverine POC is a mixture of aquatic POC (which could be impacted by the liquid discharge from nuclear industry), terrestrial and petrogenic POC. With a combination of radiocarbon measurements, POC analyses and the palynofacies method, we assessed the respective Δ14C value of the POC origins. The gaps between the Δ14C values of the sedimentary POC and those of the atmosphere were the result of the dilution from dead-C, the freshwater reservoir effect imprinting the Δ14C of aquatic POC and the age and transit time of terrestrial POC within the catchment. Importantly, we consider that the unravelling of radiocarbon composition of riverine POC could be useful to determine either the transit time of material from source to sink, some past industrial or natural events, the resilience of the river system and milestones of the social and economic trajectory of a catchment. For the last three decades, riverine sediments could also act as a source of radiocarbon for the atmosphere.


Assuntos
Carbono , Carbono/análise , Ciclo do Carbono , Monitoramento Ambiental , Rios
7.
J Environ Manage ; 292: 112775, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023788

RESUMO

Fluvial suspended particulate matter (SPM) fluxes transport large amounts of contaminants that can affect water quality and river ecosystems. To better manage these inputs in river systems, it is essential to identify SPM and sediment sources. Many studies have applied a fingerprinting method based on using metals integrated into a numerical mixing model to estimate source contributions in a watershed. Most fingerprinting studies use contemporary SPM to trace historical inputs, whereas their metal concentrations were modified over time due to anthropogenic inputs. Moreover, total concentrations of these properties are subject to change due to diagenetic processes occurring in stored sediments. The aim of this study was to assess the relevance of using the non-reactive fraction of metals (i.e. metals and metalloids) in fingerprinting studies to estimate the historical contributions of SPM tributary inputs in a sediment core. To assess metal concentrations in the 'conservative' (i.e. non-reactive) fraction, SPM (samples of sources) and sediment core layers (targeted sediments) were subjected to total mineralization and soft extraction, and the non-reactive fraction was obtained by calculating the difference between the two extractions. This approach was applied on a sediment core from the Upper Rhône River (France), using geochemical signature in contemporary SPM of three major tributaries. We showed that the non-reactive fraction retains a higher number of metals in the range test for the deepest layers, which are characterized by significant anthropogenic inputs. Through apportionment modelling using Monte Carlo simulation, we demonstrated that the tributary contributions computed using the non-reactive fraction are more consistent with historical flood and water flow data and have lower uncertainties than with the total fraction. Working with the non-reactive fraction made it possible to decipher historical inputs of SPM using contemporary SPM samples. This approach enables robust identification of sub-catchment areas liable to provide large quantities of SPM. The non-reactive fraction can be used in a variety of environmental conditions and at various spatial and temporal scales to provide a robust quantification of sediment sources.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , França , Rios , Poluentes Químicos da Água/análise
8.
Chemosphere ; 271: 129889, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736204

RESUMO

Brominated flame retardants (BFRs) are anthropogenic compounds that are ubiquitous in most manufactured goods. Few legacy BFRs have been recognised as persistent organic pollutants (POPs) and have been prohibited since the 2000s. However, most BFRs continue to be used despite growing concerns regarding their toxicity; they are often referred to as novel BFRs (nBFRs). While environmental contamination due to chlorinated POPs has been extensively investigated, the levels and spatiotemporal trends of BFRs are comparatively understudied. This study aims to reconstruct the temporal trends of both legacy and novel BFRs at the scale of a river corridor. To this end, sediment cores were sampled from backwater areas in four reaches along the Rhône River. Age-depth models were established for each of them. Polychlorinated biphenyls (PCBs), legacy BFRs (polybrominated diphenyl ethers - PBDEs, polybrominated biphenyls - PBBs and hexabromocyclododecane - HBCDDs) and seven nBFRs were quantified. Starting from the 1970s, a decreasing contamination trend was observed for PCBs. Temporal trends for legacy BFRs revealed that they reached peak concentrations from the mid-1970s to the mid-2000s, and stable concentrations by the mid-2010s. Additionally, individual concentrations of nBFRs were two to four orders of magnitude lower than those of legacy BFRs. Their temporal trends revealed that they appeared in the environment in the 1970s and 1980s. The concentrations of most of these nBFRs have not decreased in recent years. Thus, there is a need to comprehend the sources, contamination load, repartition in the environment, and toxicity of nBFRs before their concentrations reach hazardous levels.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Monitoramento Ambiental , Retardadores de Chama/análise , França , Éteres Difenil Halogenados/análise , Hidrocarbonetos Bromados/análise , Rios
9.
Sci Rep ; 10(1): 14083, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826946

RESUMO

We re-analyzed field data concerning potential effects of ionizing radiation on the abundance of mammals collected in the Chernobyl Exclusion Zone (CEZ) to interpret these findings from current knowledge of radiological dose-response relationships, here mammal response in terms of abundance. In line with recent work at Fukushima, and exploiting a census conducted in February 2009 in the CEZ, we reconstructed the radiological dose for 12 species of mammals observed at 161 sites. We used this new information rather than the measured ambient dose rate (from 0.0146 to 225 µGy h-1) to statistically analyze the variation in abundance for all observed species as established from tracks in the snow in previous field studies. All available knowledge related to relevant confounding factors was considered in this re-analysis. This more realistic approach led us to establish a correlation between changes in mammal abundance with both the time elapsed since the last snowfall and the dose rate to which they were exposed. This relationship was also observed when distinguishing prey from predators. The dose rates resulting from our re-analysis are in agreement with exposure levels reported in the literature as likely to induce physiological disorders in mammals that could explain the decrease in their abundance in the CEZ. Our results contribute to informing the Weight of Evidence approach to demonstrate effects on wildlife resulting from its field exposure to ionizing radiation.


Assuntos
Distribuição Animal/efeitos da radiação , Animais Selvagens , Acidente Nuclear de Chernobyl , Mamíferos , Exposição à Radiação , Absorção de Radiação , Animais , Fatores de Confusão Epidemiológicos , Relação Dose-Resposta à Radiação , Comportamento Predatório , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/toxicidade , Ucrânia
10.
Nat Commun ; 11(1): 3775, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728082

RESUMO

In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool.

11.
Sci Total Environ ; 723: 137873, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32392680

RESUMO

The Rhone River is one of the most nuclearized river in the world. Radionuclide concentrations in water and suspended sediments transferred to the marine environment were intensively monitored in this river over the last decades (2002-2018). Over this period of time, >12 and 25 time integrating samples were collected each year in filtered waters and suspended sediments, respectively, and analyzed for their radionuclide contents at ultra-trace levels by using top performance analytical tools. While >60% of plutonium, americium, cesium, cobalt, silver, beryllium and actinium radioisotopes are carried by sedimentary particles, sodium, tritium, antimony and strontium are mainly exported as dissolved species (>90%) due to their low affinity with particles. Most natural radionuclides contents show low seasonal variation. No significant trends are observed over the last two decades for these elements, even for 40K widely used in fertilizers after the middle of the last century, indicating that the basin has currently converged towards geochemical equilibrium for all of them. In contrast, the concentrations of numerous anthropogenic radionuclides originating from nuclear industries significantly declined since the beginning of the 2000s. Assuming no change of the current anthropic and climatic pressures over the next decades, apparent periods, i.e. the time required for a reduction by half the concentrations in the downstream part of the Rhône River, would be close to 6 years for most artificial radionuclides, except for tritium and other artificial radionuclides conveyed to the river by soil leaching and erosion (90Sr, 241Am, plutonium isotopes) which would be far longer. Referring to regional referential backgrounds, only few anthropogenic radionuclides specifically produced by nuclear industries are still detectable at the downstream part of the Rhone River and excess contents of tritium, 238Pu and 241Am are observed in filtered waters.

12.
J Environ Radioact ; 218: 106261, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32421581

RESUMO

Tritium is a radionuclide commonly observed worldwide in riverine systems. In the Rhône River downstream the Lake Geneva (Switzerland and France), its occurrence is also related to its use for its luminescent properties in watchmaking paints. In fact, tritium is regularly observed at anomalous levels in this river and extreme events such as flushing operations might conduct to its transport downstream. In the Rhône River, characterized by 21 dams downstream the Geneva Lake, such operations are regularly organized to remove the sediments and limit problematic consequences such as siltation and increased flooding hazards. The consequences of dam flushing operations on tritium concentrations were thus investigated. Samples of Suspended Particulate Matter (SPM) and water were collected in the Rhone River downstream of Geneva in June 2012, during a planned flushing operation of three upstream reservoirs (Verbois, Chancy-Pougny and Génissiat). The concentrations of tritiated water (HTO) and organically bound Tritium (OBT) were measured and compared to reference concentrations. The flushing operations had no impact on the HTO concentration while the increases observed were related to the authorized releases of HTO from a nuclear power plant located downstream the dams. High increases of OBT concentrations in SPM were observed at two stations (Creys-Malville and Jons) without clear spatial or temporal trends. These anomalous peaks could be explained by the heterogeneous spatial distribution of technogenic tritium leading to large variations of tritium concentrations within the samples even though collected in areas close to each other. The results highlight the need to investigate the amount of such technogenic tritium currently stored in the upstream Rhone River as it might be significant.


Assuntos
Monitoramento de Radiação , Trítio/análise , Poluentes Radioativos da Água/análise , França , Centrais Elétricas , Rios , Suíça
13.
J Environ Manage ; 255: 109886, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32063323

RESUMO

The Rhône River (France) has been used for energy production for decades and 21 dams have been built. To avoid problems due to sediment storage, dam flushing operations are periodically organized. The impacts of such operations on suspended particulate matter (SPM) dynamics (resuspension and fluxes) and quality (physico-chemical characteristics and contamination), were investigated during a flushing operation performed in June 2012 on 3 major dams from the Upper Rhône River. The concentrations of major hydrophobic organic contaminants (polychlorinated biphenyls, polycyclic aromatic hydrocarbons - PAHs, bis(2-ethylhexyl)phthalate [DEHP] and 4-n-nonylphenol), trace metal elements, particulate organic carbon (POC) and particle size distribution were measured on SPM samples collected during this event as well as on those obtained from 2011 to 2016 at a permanent monitoring station (150 km downstream). This allows to compare the SPM and contaminant concentrations and fluxes during the 2012 dam flushing operations with those during flood events and baseflow regime. At equal water discharge, mean SPM concentrations during flushing were on average 6-8 times higher than during flood events recorded from 2011 to 2016. While of short duration (19 days), the flushing operations led to the resuspension of SPM and contributed to a third of the mean annual SPM flux. The SPM contamination was generally lower during flushing than during baseflow or flood, probably due to the fact that flushing transports SPM only issued from resuspended sediment, with no autochtonous particles nor eroded soil. The only exception are PAHs and DEHP with higher concentrations during flushing, which must be issued from the resuspension of legacy-contaminated sediments stored behind the dams before the implementation of emission regulations. During flushing, the variations of POC and contaminant concentrations are also mostly driven by particle size. Finally, we propose a list of recommendations for the design of an adequate monitoring network to evaluate the impact of dam flushing operations on large river systems.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , França , Sedimentos Geológicos , Rios
14.
Nat Commun ; 10(1): 4557, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594936

RESUMO

Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.

15.
Sci Rep ; 9(1): 11487, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391539

RESUMO

Tritium of artificial origin was initially introduced to the environment from the global atmospheric fallout after nuclear weapons tests. Its level was increased in rainwaters by a factor 1000 during peak emissions in 1963 within the whole northern hemisphere. Here we demonstrate that tritium from global atmospheric fallout stored in sedimentary reservoir for decades as organically bound forms in recalcitrant organic matter while tritium released by nuclear industries in rivers escape from such storages. Additionally, we highlight that organically bound tritium concentrations in riverine sediments culminate several years after peaking emission in the atmosphere due to the transit time of organic matter from soils to river systems. These results were acquired by measuring both free and bound forms of tritium in a 70 year old sedimentary archive cored in the Loire river basin (France). Such tritium storages, assumed to be formed at the global scale, as well as the decadal time lag of tritium contamination levels between atmosphere and river systems have never been demonstrated until now. Our results bring new lights on tritium persistence and dynamics within the environment and demonstrate that sedimentary reservoir constitute both tritium sinks and potential delayed sources of mobile and bioavailable tritium for freshwaters and living organisms decades after atmospheric contamination.

16.
Biol Cybern ; 112(6): 575-584, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30343329

RESUMO

The detection of a silent interval or gap provides important insight into temporal processing by the auditory system. Previous research has uncovered a multitude of empirical findings leaving the mechanism of gap detection poorly understood and key issues unresolved. Here, we expand the findings by measuring psychometric functions for a number of conditions including both across-frequency and across-intensity gap detection as a first study of its kind. A model is presented which not only accounts for our findings in a quantitative manner, but also helps frame the body of work on auditory gap research. The model is based on the peripheral response and postulates that the identification of gap requires the detection of activity associated with silence.


Assuntos
Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Psicometria , Detecção de Sinal Psicológico , Estimulação Acústica , Feminino , Humanos , Masculino , Psicoacústica , Fatores de Tempo , Adulto Jovem
17.
Sci Total Environ ; 643: 40-51, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29935362

RESUMO

Tritium (3H) and Carbon-14 (14C) are radionuclides of natural (cosmogenic) origin that have also been introduced into the environment by humans since the middle of the last century. They are therefore not compounds that have only recently been released into the environment and they do not pose a recognized health threat due to their low radiotoxicity. However, they hold an important place among current concerns because they are being discharged into the environment by the nuclear industry in large quantities compared to other radionuclides. Those both radionuclides partly integrate organic matter during metabolic processes (i.e., photosynthesis) leading to organically bound forms that can be found in sediments. Organically bound tritium (OBT) analyses carried out on the sediments of the Rhône and its tributaries indicate a significant and historical tritium labelling of sedimentary particles all along the Rhône river, as well as in several northern tributaries, in particular the Ognon and the Tille rivers (tributaries of the Saone), the Doubs River and the Loue River (a tributary of the Doubs) and the Arve river. The recorded levels (10 to over 20,000 Bq/L) are very likely to be related to the presence of synthetic tritiated particles (technogenic tritium), which were used in the past in watchmaking workshops. Although overall contamination levels decrease from north to south in the Rhône watershed and fade over time, particularly due to the radioactive decay of tritium, this contamination source of technogenic tritium in the Rhône watersheds is currently still not negligible. Carbon-14 analyses show that the Rhône sediments generally display 14C levels close to the atmospheric reference values (231 Bq·kg-1 of C in 2015) or even lower in most of cases, and show sporadic and weak labelling near nuclear facilities. The low 14C levels in the Rhône sediments are most likely related to the solid contributions from tributaries draining areas that are rich in fossil organic matter, and therefore devoid of 14C. In the Rhône watershed, the presence in solid particles of tritium in a form organically bound to synthetic compounds and of petrogenic (fossil) organic carbon, can potentially alter the apparent assimilation rates to the food chain of these two radionuclides.

18.
J Environ Radioact ; 148: 92-110, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26142817

RESUMO

The devastating tsunami triggered by the Great East Japan Earthquake on March 11, 2011 inundated the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulting in a loss of cooling and a series of explosions releasing the largest quantity of radioactive material into the atmosphere since the Chernobyl nuclear accident. Although 80% of the radionuclides from this accidental release were transported over the Pacific Ocean, 20% were deposited over Japanese coastal catchments that are subject to frequent typhoons. Among the radioisotopes released during the FDNPP accident, radiocesium ((134)Cs and (137)Cs) is considered the most serious current and future health risk for the local population. The goal of this review is to synthesize research relevant to the transfer of FDNPP derived radiocesium from hillslopes to the Pacific Ocean. After radiocesium fallout deposition on vegetation and soils, the contamination may remain stored in forest canopies, in vegetative litter on the ground, or in the soil. Once radiocesium contacts soil, it is quickly and almost irreversibly bound to fine soil particles. The kinetic energy of raindrops instigates the displacement of soil particles, and their bound radiocesium, which may be mobilized and transported with overland flow. Soil erosion is one of the main processes transferring particle-bound radiocesium from hillslopes through rivers and streams, and ultimately to the Pacific Ocean. Accordingly this review will summarize results regarding the fundamental processes and dynamics that govern radiocesium transfer from hillslopes to the Pacific Ocean published in the literature within the first four years after the FDNPP accident. The majority of radiocesium is reported to be transported in the particulate fraction, attached to fine particles. The contribution of the dissolved fraction to radiocesium migration is only relevant in base flows and is hypothesized to decline over time. Owing to the hydro-meteorological context of the Fukushima region, the most significant transfer of particulate-bound radiocesium occurs during major rainfall and runoff events (e.g. typhoons and spring snowmelt). There may be radiocesium storage within catchments in forests, floodplains and even within hillslopes that may be remobilized and contaminate downstream areas, even areas that did not receive fallout or may have been decontaminated. Overall this review demonstrates that characterizing the different mechanisms and factors driving radiocesium transfer is important. In particular, the review determined that quantifying the remaining catchment radiocesium inventory allows for a relative comparison of radiocesium transfer research from hillslope to catchment scales. Further, owing to the variety of mechanisms and factors, a transdisciplinary approach is required involving geomorphologists, hydrologists, soil and forestry scientists, and mathematical modellers to comprehensively quantify radiocesium transfers and dynamics. Characterizing radiocesium transfers from hillslopes to the Pacific Ocean is necessary for ongoing decontamination and management interventions with the objective of reducing the gamma radiation exposure to the local population.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Cinza Radioativa/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Japão , Modelos Teóricos , Oceano Pacífico , Monitoramento de Radiação
19.
J Environ Radioact ; 147: 157-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26026933

RESUMO

Large quantities of radiocesium were deposited across a 3000 km(2) area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of (137)Cs in soil in the months following the accident, the depth distribution of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields. Radionuclide activity concentrations, organic content and particle size were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of (137)Cs with the majority concentrated in the uppermost layers of soils (<5 cm). More than 30 months after the accident, between 46.8 and 98.7% of the total (137)Cs inventories was found within the top 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between (137)Cs depth distribution and the other parameters. We attributed the maximum depth penetration of (137)Cs to grass cutting (73.6-98.5% of (137)Cs in the upper 5 cm) and farming operations (tillage - 46.8-51.6% of (137)Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Further analysis is required to thoroughly understand the impacts of erosion on the redistribution of radiocesium throughout the Fukushima Prefecture.


Assuntos
Radioisótopos de Césio/análise , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Solo/química , Agricultura , Acidente Nuclear de Fukushima , Japão , Oryza/crescimento & desenvolvimento
20.
Environ Sci Technol ; 48(16): 9334-40, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25014620

RESUMO

The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurements of Pu isotopic atom and activity ratios are required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we used a double-focusing sector field ICP-MS to measure Pu atom and activity ratios in recently deposited sediment along rivers draining the most contaminated part of the inland radioactive plume. Results showed that plutonium isotopes (i.e., (239)Pu, (240)Pu, (241)Pu, and (242)Pu) were detected in all samples, although in extremely low concentrations. The (241)Pu/(239)Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113 ± 0.00008 on average for the Northern Hemisphere between 31°-71° N: Kelley, J. M.; Bond, L. A.; Beasley, T. M. Global distribution of Pu isotopes and (237)Np. Sci. Total. Env. 1999, 237/238, 483-500). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout that represented up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (∼45 km) from FDNPP and been deposited in rivers representing a potential source of Pu to the ocean. In future, the high (241)Pu/(239)Pu atom ratio of the Fukushima accident sourced-Pu should be measured to quantify the supply of continental-originating material from Fukushima Prefecture to the Pacific Ocean.


Assuntos
Acidente Nuclear de Fukushima , Plutônio/análise , Monitoramento de Radiação , Cinza Radioativa/análise , Rios/química , Poluentes Radioativos da Água/análise , Japão , Centrais Nucleares , Oceano Pacífico , Plutônio/química , Radioisótopos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA