Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Rep ; 13(1): 16622, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789055

RESUMO

Inuit of Nunavik are coping with living conditions that can influence respiratory health. Our objective was to investigate associations between respiratory health in Inuit communities and their airway microbiome. Oropharyngeal samples were collected during the Qanuilirpitaa? 2017 Inuit Health Survey and subjected to metagenomic analyses. Participants were assigned to a bronchial obstruction group or a control group based on their clinical history and their pulmonary function, as monitored by spirometry. The Inuit microbiota composition was found to be distinct from other studied populations. Within the Inuit microbiota, differences in diversity measures tend to distinguish the two groups. Bacterial taxa found to be more abundant in the control group included candidate probiotic strains, while those enriched in the bronchial obstruction group included opportunistic pathogens. Crossing taxa affiliation method and machine learning consolidated our finding of distinct core microbiomes between the two groups. More microbial metabolic pathways were enriched in the control participants and these were often involved in vitamin and anti-inflammatory metabolism, while a link could be established between the enriched pathways in the disease group and inflammation. Overall, our results suggest a link between microbial abundance, interactions and metabolic activities and respiratory health in the Inuit population.


Assuntos
Broncopatias , Disbiose , Microbiota , Orofaringe , Humanos , Broncopatias/epidemiologia , Disbiose/epidemiologia , Inuíte , Pulmão , Orofaringe/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37703646

RESUMO

We use here two genomic screens in an attempt to understand the mode of action and resistance mechanism of terbinafine, an antifungal contemplated as a potential drug against the parasite Leishmania. One screen consisted in in vitro drug evolution where 5 independent mutants were selected step-by-step for terbinafine resistance. Sequencing of the genome of the 5 mutants revealed no single nucleotide polymorphisms related to the resistance phenotype. However, the ERG1 gene was found amplified as part of a linear amplicon, and transfection of ERG1 fully recapitulated the terbinafine resistance phenotype of the mutants. The second screen, Cos-seq, consisted in selecting a gene overexpression library with terbinafine followed by the sequencing of the enriched cosmids. This screen identified two cosmids derived from loci on chromosomes 13 and 29 encoding the squalene monooxygenase (ERG1) and the C8 sterol isomerase (ERG2), respectively. Transfection of the ERG1-cosmid, but not the ERG2-cosmid, produced resistance to terbinafine. Our screens suggest that ERG1 is the main, if not only, target for terbinafine in Leishmania and amplification of its gene is the main resistance mechanism.


Assuntos
Leishmania infantum , Esqualeno Mono-Oxigenase , Terbinafina/farmacologia , Esqualeno Mono-Oxigenase/genética , Leishmania infantum/genética , Variações do Número de Cópias de DNA , Naftalenos
3.
Antimicrob Agents Chemother ; 67(8): e0039523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409958

RESUMO

Two strains of Streptococcus pneumoniae, one expressing the methyltransferase Erm(B) and the other negative for erm(B), were selected for solithromycin resistance in vitro either with direct drug selection or with chemical mutagenesis followed by drug selection. We obtained a series of mutants that we characterized by next-generation sequencing. We found mutations in various ribosomal proteins (L3, L4, L22, L32, and S4) and in the 23S rRNA. We also found mutations in subunits of the phosphate transporter, in the DEAD box helicase CshB, and in the erm(B)L leader peptide. All mutations were shown to decrease solithromycin susceptibility when transformed into sensitive isolates. Some of the genes derived from our in vitro screens were found to be mutated also in clinical isolates with decreased susceptibility to solithromycin. While many mutations were in coding sequences, some were found in regulatory regions. These included novel phenotypic mutations in the intergenic regions of the macrolide resistance locus mef(E)/mel and in the vicinity of the ribosome binding site of erm(B). Our screens highlighted that macrolide-resistant S. pneumoniae can easily acquire resistance to solithromycin, and they revealed many new phenotypic mutations.


Assuntos
Antibacterianos , Macrolídeos , Macrolídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Streptococcus pneumoniae , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Mutação
4.
PLoS Negl Trop Dis ; 17(6): e0011458, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384801

RESUMO

Most of our understanding of folate metabolism in the parasite Leishmania is derived from studies of resistance to the antifolate methotrexate (MTX). A chemical mutagenesis screen of L. major Friedlin and selection for resistance to MTX led to twenty mutants with a 2- to 400-fold decrease in MTX susceptibility in comparison to wild-type cells. The genome sequence of the twenty mutants highlighted recurrent mutations (SNPs, gene deletion) in genes known to be involved in folate metabolism but also in novel genes. The most frequent events occurred at the level of the locus coding for the folate transporter FT1 and included gene deletion and gene conversion events, as well as single nucleotide changes. The role of some of these FT1 point mutations in MTX resistance was validated by gene editing. The gene DHFR-TS coding for the dihydrofolate reductase-thymidylate synthase was the second locus with the most mutations and gene editing confirmed a role in resistance for some of these. The pteridine reductase gene PTR1 was mutated in two mutants. The episomal overexpression of the mutated versions of this gene, but also of DHFR-TS, led to parasites several fold more resistant to MTX than those overexpressing the wild-type versions. Genes with no known link with folate metabolism and coding for a L-galactolactone oxidase or for a methyltransferase were mutated in specific mutants. Overexpression of the wild-type versions of these genes in the appropriate mutants reverted their resistance. Our Mut-seq approach provided a holistic view and a long list of candidate genes potentially involved in folate and antifolate metabolism in Leishmania.


Assuntos
Antagonistas do Ácido Fólico , Leishmania major , Parasitos , Animais , Metotrexato/farmacologia , Metotrexato/metabolismo , Leishmania major/genética , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/metabolismo , Parasitos/metabolismo , Resistência a Medicamentos/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Ácido Fólico/metabolismo , Timidilato Sintase/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-36525934

RESUMO

Treatments against leishmaniasis are limited and the development of new molecules is crucial. One class of developmental drug that has shown activity against the parasite Leishmania are thiophene derivatives. Here we synthetized thirty-eight novel thiophene compounds and characterized their activity and potential for resistance against L. infantum. Half of the molecules had an EC50 in the low micromolar range, the piperidine derivatives being more potent than the tetramethylpyran derivatives. Resistance was challenging to select for, and resistant cells could only be raised against one (GC1-19) of the four most active compounds. Using chemogenomic screens we show that a gene conversion event at the ABCG2 locus as well as the overexpression of a tryparedoxin peroxidase are responsible for a weak but significant resistance to the GC1-19 drug candidate. Together, our results suggest that thiophene is a scaffold of interest for further drug development against leishmaniasis.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Parasitos , Animais , Leishmania infantum/genética , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Leishmaniose/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico
7.
PLoS Negl Trop Dis ; 15(12): e0010046, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914690

RESUMO

Studies of drug resistance in the protozoan parasites of the genus Leishmania have been helpful in revealing biochemical pathways as potential drug targets. The chlorinated glutamine analogue acivicin has shown good activity against Leishmania cells and was shown to target several enzymes containing amidotransferase domains. We selected a Leishmania tarentolae clone for acivicin resistance. The genome of this resistant strain was sequenced and the gene coding for the amidotransferase domain-containing GMP synthase was found to be amplified. Episomal expression of this gene in wild-type L. tarentolae revealed a modest role in acivicin resistance. The most prominent defect observed in the resistant mutant was reduced uptake of glutamate, and through competition experiments we determined that glutamate and acivicin, but not glutamine, share the same transporter. Several amino acid transporters (AATs) were either deleted or mutated in the resistant cells. Some contributed to the acivicin resistance phenotype although none corresponded to the main glutamate transporter. Through sequence analysis one AAT on chromosome 22 corresponded to the main glutamate transporter. Episomal expression of the gene coding for this transporter in the resistant mutant restored glutamate transport and acivicin susceptibility. Its genetic knockout led to reduced glutamate transport and acivicin resistance. We propose that acivicin binds covalently to this transporter and as such leads to decreased transport of glutamate and acivicin thus leading to acivicin resistance.


Assuntos
Antiprotozoários/farmacologia , Ácido Glutâmico/metabolismo , Isoxazóis/farmacologia , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Resistência a Medicamentos , Humanos , Leishmania/genética , Leishmaniose/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
Parasit Vectors ; 14(1): 438, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454601

RESUMO

BACKGROUND: The evolution of drug resistance is one of the biggest challenges in leishmaniasis and has prompted the need for new antileishmanial drugs. Repurposing of approved drugs is a faster and very attractive strategy that is gaining supporters worldwide. Different anticancer topoisomerase 1B (TOP1B) inhibitors have shown strong antileishmanial activity and promising selective indices, supporting the potential repurposing of these drugs. However, cancer cells and Leishmania share the ability to become rapidly resistant. The aim of this study was to complete a whole-genome exploration of the effects caused by exposure to topotecan in order to highlight the potential mechanisms deployed by Leishmania to favor its survival in the presence of a TOP1B inhibitor. METHODS: We used a combination of stepwise drug resistance selection, whole-genome sequencing, functional validation, and theoretical approaches to explore the propensity of and potential mechanisms deployed by three independent clones of L. infantum to resist the action of TOP1B inhibitor topotecan. RESULTS: We demonstrated that L. infantum is capable of becoming resistant to high concentrations of topotecan without impaired growth ability. No gene deletions or amplifications were identified from the next-generation sequencing data in any of the three resistant lines, ruling out the overexpression of efflux pumps as the preferred mechanism of topotecan resistance. We identified three different mutations in the large subunit of the leishmanial TOP1B (Top1BF187Y, Top1BG191A, and Top1BW232R). Overexpression of these mutated alleles in the wild-type background led to high levels of resistance to topotecan. Computational molecular dynamics simulations, in both covalent and non-covalent complexes, showed that these mutations have an effect on the arrangement of the catalytic pentad and on the interaction of these residues with surrounding amino acids and DNA. This altered architecture of the binding pocket results in decreased persistence of topotecan in the ternary complex. CONCLUSIONS: This work helps elucidate the previously unclear potential mechanisms of topotecan resistance in Leishmania by mutations in the large subunit of TOP1B and provides a valuable clue for the design of improved inhibitors to combat resistance in both leishmaniasis and cancer. Our data highlights the importance of including drug resistance evaluation in drug discovery cascades.


Assuntos
Antiprotozoários/farmacologia , DNA Topoisomerases Tipo I/genética , Resistência a Medicamentos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Mutação , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Leishmania infantum/enzimologia , Leishmaniose/parasitologia , Simulação de Dinâmica Molecular , Sequenciamento Completo do Genoma
9.
Microorganisms ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210040

RESUMO

Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.

10.
ACS Infect Dis ; 7(8): 2472-2482, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34282886

RESUMO

Chemotherapy against the neglected tropical disease visceral leishmaniasis (VL) is suboptimal with only four licensed drugs. Amphotericin B (AmB), despite its toxicity, remained a second line drug for a long time. However, the demonstration that liposomal AmB is highly effective against VL propelled it, despite its cost, to a first line drug in many countries. While several ongoing efforts are aiming at finding cheaper and stable AmB-formulations, an alternative strategy is the development of less-toxic AmB derivatives. We show here that two less-toxic AmB derivatives with the carboxylate at position 16 of AmB derivatized to a methyl urea (AmB-MU) or amino urea (AmB-AU) are active in vitro against Leishmania donovani, both as free-living parasites as well as their intracellular form. Both less-toxic derivatives, similarly to AmB, target the ergosterol pathway of L. donovani. While the AmB-AU derivative showed female-specific liver toxicity in vivo, the AmB-MU derivative was well-tolerated and more effective than AmB against experimental VL. These studies are an important step for improving AmB-based therapy against a prevalent parasitic disease.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antiprotozoários/farmacologia , Composição de Medicamentos , Feminino , Humanos , Leishmaniose Visceral/tratamento farmacológico
11.
PLoS Negl Trop Dis ; 15(4): e0009377, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33905412

RESUMO

Our understanding of folate metabolism in Leishmania has greatly benefited from studies of resistance to the inhibitor methotrexate (MTX). Folates are reduced in Leishmania by the bifunctional dihydrofolate reductase thymidylate synthase (DHFR-TS) and by pteridine reductase (PTR1). To further our understanding of folate metabolism in Leishmania, a Cos-seq genome-wide gain of function screen was performed against MTX and against the two thymidylate synthase (TS) inhibitors 5-fluorouracil and pemetrexed. The screen revealed DHFR-TS and PTR1 but also the nucleoside transporter NT1 and one hypothetical gene derived from chromosome 31. For MTX, the concentration of folate in the culture medium affected the enrichment pattern for genes retrieved by Cos-seq. We generated a L. infantum DHFR-TS null mutant that was thymidine auxotroph, a phenotype that could be rescued by the addition of thymidine or by transfection of the flavin dependent bacterial TS gene ThyX. In these DHFR-TS null mutants it was impossible to obtain a chromosomal null mutant of PTR1 except if DHFR-TS or PTR1 were provided episomally. The transfection of ThyX however did not allow the elimination of PTR1 in a DHFR-TS null mutant. Leishmania can survive without copies of either DHFR-TS or PTR1 but not without both. Provided that our results observed with the insect stage parasites are also replicated with intracellular parasites, it would suggest that antifolate therapy in Leishmania would only work if both DHFR-TS and PTR1 would be targeted simultaneously.


Assuntos
Deleção de Genes , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Metotrexato/farmacologia , Complexos Multienzimáticos/genética , Tetra-Hidrofolato Desidrogenase/genética , Timidilato Sintase/genética , Animais , DNA de Protozoário/genética , DNA Recombinante/genética , Resistência a Medicamentos , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Leishmania infantum/enzimologia , Metotrexato/metabolismo , Complexos Multienzimáticos/metabolismo , Fenótipo , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo , Transfecção
12.
Clin Infect Dis ; 72(10): e526-e532, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32827255

RESUMO

BACKGROUND: Antimonial drugs have long been the mainstay to treat visceral leishmaniasis. Their use has been discontinued in the Indian subcontinent because of drug resistance, but they are still clinically useful elsewhere. The goal of this study was to find markers of antimony resistance in Leishmania donovani clinical isolates and validate experimentally their role in resistance. METHODS: The genomes of sensitive and antimony-resistant clinical isolates were sequenced. The role of a specific gene in contributing to resistance was studied by CRISPR-Cas9-mediated gene editing and intracellular drug sensitivity assays. RESULTS: Both gene copy number variations and single nucleotide variants were associated with antimony resistance. A homozygous insertion of 2 nucleotides was found in the gene coding for the aquaglyceroporin AQP1 in both resistant isolates. Restoring the wild-type AQP1 open reading frame re-sensitized the 2 independent resistant isolates to antimonials. Alternatively, editing the genome of a sensitive isolate by incorporating the 2-nucleotide insertion in its AQP1 gene led to antimony-resistant parasites. CONCLUSIONS: Through genomic analysis and CRISPR-Cas9-mediated genome editing we have proven the role of the AQP1 mutations in antimony clinical resistance in L. donovani.


Assuntos
Antiprotozoários , Aquagliceroporinas , Leishmania donovani , Leishmaniose Visceral , Antimônio/farmacologia , Antiprotozoários/farmacologia , Aquagliceroporinas/genética , Variações do Número de Cópias de DNA , Resistência a Medicamentos/genética , Humanos , Leishmania donovani/genética , Mutação
13.
Microb Genom ; 6(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33074087

RESUMO

We report on the combination of chemical mutagenesis, azithromycin selection and next-generation sequencing (Mut-Seq) for the identification of small nucleotide variants that decrease the susceptibility of Streptococcus pneumoniae to the macrolide antibiotic azithromycin. Mutations in the 23S ribosomal RNA or in ribosomal proteins can confer resistance to macrolides and these were detected by Mut-Seq. By concentrating on recurrent variants, we could associate mutations in genes implicated in the metabolism of glutamine with decreased azithromycin susceptibility among S. pneumoniae mutants. Glutamine synthetase catalyses the transformation of glutamate and ammonium into glutamine and its chemical inhibition is shown to sensitize S. pneumoniae to antibiotics. A mutation affecting the ribosomal-binding site of a putative ribonuclease J2 is also shown to confer low-level resistance. Mut-Seq has the potential to reveal chromosomal changes enabling high resistance as well as novel events conferring more subtle phenotypes.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Farmacorresistência Bacteriana/genética , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Endorribonucleases/metabolismo , Glutamato-Amônia Ligase/antagonistas & inibidores , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Mutagênese/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/genética
14.
Microorganisms ; 8(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599761

RESUMO

Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32413766

RESUMO

Control of both human and canine leishmaniasis is based on a very short list of chemotherapeutic agents, headed by antimonial derivatives (Sb). The utility of these molecules is severely threatened by high rates of drug resistance. The ABC transporter MRPA is one of the few key Sb resistance proteins described to date, whose role in detoxification has been thoroughly studied in Leishmania parasites. Nonetheless, its rapid amplification during drug selection complicates the discovery of other mechanisms potentially involved in Sb resistance. In this study, stepwise drug-resistance selection and next-generation sequencing were combined in the search for novel Sb-resistance mechanisms deployed by parasites when MRPA is abolished by targeted gene disruption. The gene mrpA is not essential in L. infantum, and its disruption leads to an Sb hypersensitive phenotype in both promastigotes and amastigotes. Five independent mrpA-/- mutants were selected for antimony resistance. These mutants displayed major changes in their ploidy, as well as extrachromosomal linear amplifications of the subtelomeric region of chromosome 23, which includes the genes coding for ABCC1 and ABCC2. Overexpression of ABCC2, but not of ABCC1, resulted in increased Sb tolerance in the mrpA-/- mutant. SNP analyses revealed three different heterozygous mutations in the gene coding for a serine acetyltransferase (SAT) involved in de novo cysteine synthesis in Leishmania. Overexpression of satQ390K, satG321R and satG325R variants led to a 2-3.2 -fold increase in Sb resistance in mrpA-/- parasites. Only satG321R and satG325R induced increased Sb resistance in wild-type parasites. These results reinforce and expand knowledge on the complex nature of Sb resistance in Leishmania parasites.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antimônio/farmacologia , Leishmania infantum , Serina O-Acetiltransferase/genética , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Cães , Resistência a Medicamentos/genética , Genes de Protozoários , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Leishmaniose/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Mutação , Proteínas de Protozoários/genética , Serina O-Acetiltransferase/efeitos dos fármacos , Sequenciamento Completo do Genoma
16.
Microb Cell ; 7(2): 59-61, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32025514

RESUMO

Leishmania parasites are responsible for a range of clinical manifestations ranging from self-resolving cutaneous sores to life-threatening diseases. The management of leishmaniasis is complicated in part by the scarcity of treatment options but also by the emerging or established resistance to available drugs. A major driver of resistance in Leishmania is the amplification of resistance genes taking advantage of the highly repetitive genomic landscape of the parasite. The recent advent of whole genome gain of function screens gave new momentum to the study of such resistance mechanisms, leading to the identification of novel resistance factors and drug targets against approved drugs, which include antimony (SbIII), miltefosine (MIL), paromomycin (PMM), and amphotericin B. However, these screens do not pinpoint single nucleotide variations (SNVs), an important contributor of drug resistance. To fill the gap, our recent study describes the optimization of chemical mutagenesis coupled to next generation sequencing, an approach called Mut-seq, as a way to explore networks of drug resistance genes in organisms with a diploid to mosaic aneuploid genome like Leishmania. Our Mut-seq screen revealed associations between genes linked with lipid metabolism and resistance to MIL, and highlighted the role of a protein kinase in translation leading to resistance to PMM.

17.
Nat Commun ; 10(1): 5627, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819054

RESUMO

Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability.


Assuntos
Resistência a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leishmania/genética , Mutagênese , Mutação/genética , Paromomicina/farmacologia , Fosforilcolina/análogos & derivados , Fosforilação/efeitos dos fármacos , Fosforilcolina/farmacologia
18.
mSystems ; 4(6)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744905

RESUMO

Carbapenem-resistant Gram-negative bacteria are considered a major threat to global health. Imipenem (IMP) is used as a last line of treatment against these pathogens, but its efficacy is diminished by the emergence of resistance. We applied a whole-genome screen in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates that were submitted to chemical mutagenesis, selected for IMP resistance, and characterized by next-generation sequencing. A comparative analysis of IMP-resistant clones showed that most of the highly mutated genes shared by the three species encoded proteins involved in transcription or signal transduction. Of these, the rpoD gene was one of the most prevalent and an E. coli strain disrupted for rpoD displayed a 4-fold increase in resistance to IMP. E. coli and K. pneumoniae also specifically shared several mutated genes, most involved in membrane/cell envelope biogenesis, and the contribution in IMP susceptibility was experimentally proven for amidases, transferases, and transglycosidases. P. aeruginosa differed from the two Enterobacteriaceae isolates with two different resistance mechanisms, with one involving mutations in the oprD porin or, alternatively, in two-component systems. Our chemogenomic screen performed with the three species has highlighted shared and species-specific responses to IMP.IMPORTANCE Gram-negative carbapenem-resistant bacteria are a major threat to global health. The use of genome-wide screening approaches to probe for genes or mutations enabling resistance can lead to identification of molecular markers for diagnostics applications. We describe an approach called Mut-Seq that couples chemical mutagenesis and next-generation sequencing for studying resistance to imipenem in the Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa The use of this approach highlighted shared and species-specific responses, and the role in resistance of a number of genes involved in membrane biogenesis, transcription, and signal transduction was functionally validated. Interestingly, some of the genes identified were previously considered promising therapeutic targets. Our genome-wide screen has the potential to be extended outside drug resistance studies and expanded to other organisms.

19.
mSystems ; 4(5)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615876

RESUMO

To further our understanding of one-carbon metabolism in the protozoan parasite Leishmania, we conducted genomic screens to study how the parasite responded to sinefungin (SNF) selection. SNF is a structural analogue of S-adenosylmethionine (AdoMet), a key methyl group donor to a number of biomolecules. One screen consisted of sequencing SNF-resistant mutants generated by stepwise selection with gradually increasing drug concentrations. These studies demonstrated deletion of the AdoMet transporter (AdoMetT1) by intergenic recombination as a crucial loss-of-function marker for SNF resistance. The second screen consisted of Cos-seq, a gain-of-function cosmid-based genomewide functional screen with increasing SNF concentration coupled to next-generation sequencing. Cosmids enriched in that screen and sequenced led to the identification of (i) the AdoMet synthetase (METK) as the major SNF target, (ii) an mRNA [(guanine-N7)-methyltransferase (CMT1)], (iii) a leucine carboxyl methyltransferase (LCMT), (iv) two tryparedoxin genes, and (v) two protein phosphatase regulatory genes. Further functional exploration indicated that LCMT interacts with one phosphatase catalytic subunit (PP2AC) and that mutation of the C-terminal leucine residue of PP2AC affects sinefungin susceptibility. These holistic screens led to the identification of transporters, biosynthetic genes, RNA and protein methyltransferases, as well as phosphatases linked to AdoMet-mediated functions in Leishmania IMPORTANCE The two main cellular metabolic one-carbon donors are reduced folates and S-adenosylmethionine, whose biosynthetic pathways have proven highly effective in chemotherapeutic interventions in various cell types. Sinefungin, a nucleoside analogue of S-adenosylmethionine, was shown to have potent activity against the protozoan parasite Leishmania Here, we studied resistance to sinefungin using whole-genome approaches as a way to further our understanding of the role of S-adenosylmethionine in this parasite and to reveal novel potential drug targets. These approaches allowed the characterization of novel features related to S-adenosylmethionine function in Leishmania which could further help in the development of sinefungin-like compounds against this pathogenic parasite.

20.
Methods Mol Biol ; 1971: 141-167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980302

RESUMO

Leishmania is still a major cause of mortality and morbidity worldwide. Few efficient drugs are available, and resistance threatens actual treatments. In order to improve knowledge about the mode of action of current drugs and those in development, as well as to understand the mechanisms pertaining to their resistance, we recently described a sensitive and high-throughput method termed Cos-Seq. Here we provide a detailed protocol for every step of the procedure, from library construction to drug selection, cosmid extraction, and next-generation sequencing of extracted cosmids. A section on the bioinformatics of Cos-Seq is also included. Cos-Seq facilitates the identification of gain-of-function resistance mechanisms and drug targets and is a useful tool in resistance and drug development studies.


Assuntos
Antiprotozoários , Resistência a Medicamentos/genética , Mutação com Ganho de Função , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Leishmania/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA