RESUMO
Acinetobacter baumannii is one of the most important pathogens worldwide. The intrinsic and acquired resistance of A. baumannii, coupled with the slow pace of novel antimicrobial drug development, poses an unprecedented and enormous challenge to clinical anti-infective therapy of A. baumannii. Recent studies in the field of pathogenicity, antibiotic resistance, and biofilms of A. baumannii have focused on the model strains, including ATCC 17978, ATCC 19606, and AB5075. However, these model strains represent only a limited portion of the heterogeneity in A. baumannii. Furthermore, variants of these model strains have emerged that show significant diversity not only at the genotypic level but also reflected in differences at the phenotypic levels of capsule, virulence, pathogenicity, and antibiotic resistance. Research on A. baumannii, a key pathogen, would benefit from a standardized approach, which characterizes heterogeneous strains in order to facilitate rapid diagnosis, discovery of new therapeutic targets, and efficacy assessment. Our study provides and describes a standardized, genomically and phenotypically heterogeneous panel of 45 different A. baumannii strains for the research community. In addition, we performed comparative analyses of several phenotypes of this panel. We found that the sequence type 2 (ST2) group showed significantly higher rates of resistance, lower fitness cost for adaptation, and yet less biofilm formation. The Macrocolony type E (MTE, flat center and wavy edge phenotype reported in the literature) group showed a less clear correlation of resistance rates and growth rate, but was observed to produce more biofilms. Our study sheds light on the complex interplay of resistance fitness and biofilm formation within distinct strains, offering insights crucial for combating A. baumannii infection. IMPORTANCE: Acinetobacter baumannii is globally notorious, and in an effort to combat the spread of such pathogens, several emerging candidate therapies have already surfaced. However, the strains used to test these therapies vary across studies (the sources and numbers of test strains are varied and often very large, with little heterogeneity). The variation complicates the studies. Furthermore, the limited standardized resources of A. baumannii strains have greatly restricted the research on the physiology, pathogenicity, and antibiotic resistance. Therefore, it is crucial for the research community to acquire a standardized and heterogeneous panel of A. baumannii. Our study meticulously selected 45 diverse A. baumannii strains from a total of 2,197 clinical isolates collected from 64 different hospitals across 27 provinces in China, providing a scientific reference for the research community. This assistance will significantly facilitate scientific exchange in academic research.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biofilmes , Genótipo , Fenótipo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/farmacologia , Humanos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Virulência/genética , Desenvolvimento de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana/genéticaRESUMO
Research on megaplasmids that contribute to the spread of antimicrobial resistance (AMR) in Pseudomonas aeruginosa strains has grown in recent years due to the now widely used technologies allowing long-read sequencing. Here, we systematically analyzed distinct and consistent genetic characteristics of megaplasmids found in P. aeruginosa. Our data provide information on their phylogenetic distribution and hypotheses tracing the potential evolutionary paths of megaplasmids. Most of the megaplasmids we found belong to the IncP-2-type, with conserved and syntenic genetic backbones carrying modules of genes associated with chemotaxis apparatus, tellurite resistance and plasmid replication, segregation, and transmission. Extensively variable regions harbor abundant AMR genes, especially those encoding ß-lactamases such as VIM-2, IMP-45, and KPC variants, which are high-risk elements in nosocomial infection. IncP-2 megaplasmids act as effective vehicles transmitting AMR genes to diverse regions. One evolutionary model of the origin of megaplasmids claims that chromids can develop from megaplasmids. These chromids have been characterized as an intermediate between a megaplasmid and a chromosome, also containing core genes that can be found on the chromosome but not on the megaplasmid. Using in silico prediction, we identified the "PABCH45 unnamed replicon" as a putative chromid in P. aeruginosa, which shows a much higher similarity and closer phylogenetic relationship to chromosomes than to megaplasmids while also encoding plasmid-like partition genes. We propose that such a chromid could facilitate genome expansion, allowing for more rapid adaptations to novel ecological niches or selective conditions, in comparison to megaplasmids.
RESUMO
Phage-antibiotic combinations to treat bacterial infections are gaining increased attention due to the synergistic effects often observed when applying both components together. Most studies however focus on a single pathogen, although in many clinical cases multiple species are present at the site of infection. The aim of this study was to investigate the anti-biofilm activity of phage-antibiotic/antifungal combinations on single- and dual-species biofilms formed by P. aeruginosa and the fungal pathogen Candida albicans. The Pseudomonas phage Motto in combination with ciprofloxacin had significant anti-biofilm activity. We then compared biofilms formed by P. aeruginosa alone with the dual-species biofilms formed by bacteria and C. albicans. Here, we found that the phage together with the antifungal fluconazole was active against 6-h-old dual-species biofilms but showed only negligible activity against 24-h-old biofilms. This study lays the first foundation for potential therapeutic approaches to treat co-infections caused by bacteria and fungi using phage-antibiotic combinations.
Assuntos
Antibacterianos , Antifúngicos , Biofilmes , Candida albicans , Ciprofloxacina , Fagos de Pseudomonas , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Antifúngicos/farmacologia , Antibacterianos/farmacologia , Fagos de Pseudomonas/fisiologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Ciprofloxacina/farmacologia , Fluconazol/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Infections caused by Pseudomonas aeruginosa are becoming increasingly difficult to treat due to the emergence of strains that have acquired multidrug resistance. Therefore, phage therapy has gained attention as an alternative to the treatment of pseudomonal infections. Phages are not only bactericidal but occasionally show activity against biofilm as well. In this study, we describe the Pseudomonas phage Motto, a T1-like phage that can clear P. aeruginosa infections in an animal model and also exhibits biofilm-degrading properties. The phage has a substantial anti-biofilm activity against strong biofilm-producing isolates (n = 10), with at least a twofold reduction within 24 h. To demonstrate the safety of using phage Motto, cytotoxicity studies were conducted with human cell lines (HEK 293 and RAW 264.7 macrophages). Using a previously established in vivo model, we demonstrated the efficacy of Motto in Caenorhabditis elegans, with a 90% survival rate when treated with the phage at a multiplicity of infection of 10.
RESUMO
In the post-antibiotic era, the overuse of antimicrobials has led to a massive increase in antimicrobial resistance, leaving medical doctors few or no treatment options to fight infections caused by superbugs. The use of bacteriophages is a promising alternative to treat infections, supplementing or possibly even replacing antibiotics. Using phages for therapy is possible, since these bacterial viruses can kill bacteria specifically, causing no harm to the normal flora. However, bacteria have developed a multitude of sophisticated and complex ways to resist infection by phages, including abortive infection and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system. Phages also can evolve and acquire new anti-defense strategies to continue predation. An in-depth exploration of both defense and anti-defense mechanisms would contribute to optimizing phage therapy, while we would also gain novel insights into the microbial world. In this paper, we summarize recent research on bacterial phage resistance and phage anti-defense mechanisms, as well as collaborative win-win systems involving both virus and host.
Assuntos
Bacteriófagos , Bactérias , Sistemas CRISPR-CasRESUMO
OBJECTIVES: To characterize two Escherichia coli strains isolated from a patient pre- and post-treatment, using ß-lactams and ß-lactam/ß-lactamase inhibitor combinations (BLBLIs). METHODS: A combination of antibiotic susceptibility testing (AST) with whole genome sequencing using Illumina and Oxford Nanopore platforms. Long-read sequencing and reverse transcription-quantitative PCR were performed to determine the copy numbers and expression levels of antibiotic resistance genes (ARGs), respectively. Effect on fitness costs were assessed by growth rate determination. RESULTS: The strain obtained from the patient after the antibiotic treatment (XH989) exhibited higher resistance to cefepime, BLBLIs and quinolones compared with the pre-treatment strain (XH987). Sequencing revealed IS26-mediated duplications of a IS26-fosA3-blaCTX-M-65 plasmid-embedded element in strain XH989. Long-read sequencing (7.4 G data volume) indicated a variation in copy numbers of blaCTX-M-65 within one single culture of strain XH989. Increased copy numbers of the IS26-fosA3-blaCTX-M-65 element were correlated with higher CTX-M-65 expression level and did not impose fitness costs, while facilitating faster growth under high antibiotic concentrations. CONCLUSION: Our study is an example from the clinic how BLBLIs and ß-lactams exposure in vivo possibly promoted the amplification of an IS26-multiple drug resistance (MDR) region. The observation of a copy number variation seen with the blaCTX-M-65 gene in the plasmid of the post-treatment strain expands our knowledge of insertion sequence dynamics and evolution during treatment.
Assuntos
Cefalosporinas , Escherichia coli , Humanos , Cefalosporinas/farmacologia , Variações do Número de Cópias de DNA , beta-Lactamases/genética , Antibacterianos/farmacologia , Monobactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Resistência Microbiana a MedicamentosRESUMO
This study aimed to characterize two novel VIM-type metallo-ß-lactamases, VIM-84 and VIM-85, and reveal the important role of the IncP-2 type megaplasmids in the spread of antimicrobial resistance (AMR) genes. VIM-84 and VIM-85 were encoded by two novel genes bla VIM-84 and bla VIM-85 which showed similarity to bla VIM-24. Both bla VIM-84 and bla VIM-85 are harbored into class 1 integrons embedded into the Tn1403 transposon. The bla VIM-85 gene was identified in a megaplasmid, which was related to 17 megaplasmid sequences with sizes larger than 430 kb, deposited previously in Genbank. A comparative analysis of complete plasmid sequences showed highly similar backbone regions and various AMR genes. A phylogenetic tree revealed that these megaplasmids, which were widely distributed globally, were vehicles for the spread of AMR genes. The bla VIM-24, bla VIM-84, and bla VIM-85 genes were cloned into pGK1900, and the recombinant vectors were further transformed into Escherichia coli DH5α and Pseudomonas aeruginosa PAO1. The antimicrobial susceptibility test of the cloning strains showed high levels of resistance to ß-lactams while they remained susceptible to aztreonam. Enzymatic tests revealed that both, VIM-84 and VIM-85, exhibited higher activity in hydrolyzing ß-lactams compared to VIM-24. A D117N mutation found in VIM-24 affected binding to the antibiotics. IMPORTANCE The metallo-ß-lactamases-producing Pseudomonas aeruginosa strains play an important role in hospital outbreaks and the VIM-type enzyme is the most prevalent in European countries. Two novel VIM-type enzymes in our study, VIM-84 and VIM-85, have higher levels of resistance to ß-lactams and greater hydrolytic activities for most ß-lactams compared with VIM-24. Both bla VIM-84 and bla VIM-85 are harbored into class 1 integrons embedded into the Tn1403 transposon. Notably, the genes bla VIM-85 are carried by three different IncP-2-type megaplasmids which are distributed locally and appear responsible for the spread of antimicrobial resistance genes in hospital settings.
RESUMO
Acinetobacter baumannii has become one of the most challenging pathogens in many countries with limited treatment options available. Cefiderocol, a novel siderophore-conjugated cephalosporin, shows potent in vitro activity against A. baumannii, including isolates resistant to carbapenems. To date, few reports on the mechanisms of cefiderocol resistance are available. In order to investigate potential mechanisms of cefiderocol resistance in A. baumannii, we performed in vitro evolution experiments at sub-lethal concentrations of the antibiotic. All four cefiderocol-resistant strains obtained harbored mutations in two-component system BaeS-BaeR. When we engineered the mutations of BaeS (D89V) and BaeR (S104N) into the genome of ATCC 17978, these mutations increased cefiderocol minimum inhibitory concentrations (MICs) by 8-fold to 16-fold. Transcriptome analyses showed that the expression of MacAB-TolC and MFS transporters was up-regulated in BaeSR mutants. Strains over-expressing MFS transporter and MacAB-TolC displayed higher MICs and higher median inhibition concentration (IC50) values, while MICs and IC50 decreased when efflux pump genes were knocked out. In a BaeR mutant with up-regulated csu operon, we observed a higher number of pili, enhanced surface motility, and increased biofilm formation compared to wild-type ATCC 17978. Using the Galleria mellonella infection model, we found that the BaeS mutant in which paa operon was up-regulated exhibited increased virulence. In conclusion, the mutations in BaeSR decreased cefiderocol susceptibility of A. baumannii through up-regulating efflux pumps gene expression. BaeS or BaeR also controls the expression of csu and paa, influencing biofilm formation, surface motility, and virulence in A. baumannii. IMPORTANCE The widespread prevalence of multi-drug-resistant A. baumannii (MDRAB) poses a significant therapeutic challenge. Cefiderocol is considered a promising antibiotic for the treatment of MDRAB infections. Therefore, it is necessary to study the potential resistance mechanisms of cefiderocol to delay the development of bacterial resistance. Here, we demonstrated that mutations in baeS and baeR reduced the susceptibility of A. baumannii to cefiderocol by up-regulating the expression of the MFS family efflux pump and MacAB-TolC efflux pump. We propose that BaeS mutants increase bacterial virulence by up-regulating the expression of the paa operon. This also reports the regulatory effect of BaeSR on csu operon for the first time. This study provides further insights into the role of BaeSR in developing cefiderocol resistance and virulence in A. baumannii.
Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Virulência/genética , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Proteínas de Membrana Transportadoras/genética , Mutação , CefiderocolRESUMO
The increased carbapenem resistance among Pseudomonas aeruginosa has become a serious health issue worldwide. We reported an extensively drug-resistant (XDR) P. aeruginosa PA30 isolate which belonged to sequence type ST463 and contained an IncP-2 plasmid (pPA30_1) carrying two genes, namely, blaIMP-45 and blaAFM-1, which encoded the metallo-ß-lactamases AFM-1 and IMP-45, respectively. Additionally, the strain had a plasmid (pPA30_2) with two copies of the blaKPC-2 genes embedded. The plasmid pPA30_1 was highly similar to the previously reported plasmid pHS17-127, which has the same genetic architecture. This plasmid contained blaIMP-45, located in a second gene cassette of the integron In786, carried by a Tn1403-derivative transposon acquiring an ISCR27n3-blaAFM-1 structure. Interestingly, the transposon in pPA30_1 acquired an extra ISCR1-qnrVC6 module and formed a novel transposon, which was subsequently annotated as Tn6485f. The blaKPC-2 genes in pPA30_2 underwent duplication due to the inversion of the IS26-blaKPC-2-IS26 element, which resulted in two copies of blaKPC-2. IMPORTANCE The ST463 clone is an emerging high-risk sequence type that is spreading with blaKPC-2-containing plasmids. The core blaKPC-2 genetic platform is ISKpn27-blaKPC-2-ISKpn6 in almost all samples, and the adjacent region beyond the core platform varies by IS26-mediated inversion or duplication events, amplifying the blaKPC-2 gene copies. The ST463 P. aeruginosa strain PA30 in our study contains another two metallo-ß-lactamase genes, namely, blaIMP-45 and blaAFM-1, in a novel transposon Tn6485f that is harbored by the IncP-2 megaplasmid. The pPA30_1 carrying blaIMP-45 and blaAFM-1 is highly related to pHS17-127 from the ST369 P. aeruginosa strain, indicating the putative dissemination of the megaplasmid between different clones.
Assuntos
Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/metabolismo , Plasmídeos/genética , beta-Lactamases/metabolismo , Integrons/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologiaRESUMO
AIMS: To investigate the in vivo evolution of the mucoid-phenotype of ST11-KL64 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from the same patients and gain insights into diverse evolution and biology of these strains. METHODS: Whole genome sequencing and bioinformatic analysis were used to determine the mutation involved in the mucoid phenotype of ST11-KL64 CRKP. Gene knockout, bacterial morphology and capsular polysaccharides (CPS) extraction were used to verify the role of wzc and wcaJ in the mucoid phenotypes. Antimicrobial susceptibility, growth assay, biofilm formation, host cell adhesion and virulence assay were used to investigate the pleiotropic role of CPS changes in ST11-KL64 CRKP strains. RESULTS: Mutation of wzc S682N led to hypermucoid phenotype, which had negative impact on bacterial fitness and resulted in reduced biofilm formation and epithelial cell adhesion; while enhanced resistance to macrophage phagocytosis and virulence. Mutations of wcaJ gene led to non-mucoid phenotype with increased biofilm formation and epithelial cell adhesion, but reduced resistance of macrophage phagocytosis and virulence. Using virulence gene knockout, we demonstrated that CPS, rather than the pLVPK-like virulence plasmid, has a greater effect on mucoid phenotypic changes. CPS could be used as a surrogate marker of virulence in ST11-KL64 CRKP strains. CONCLUSIONS: ST11-KL64 CRKP strains sacrifice certain advantages to develop pathogenicity by changing CPS with two opposite in vivo evolution strategies.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Mutação , Virulência/genéticaRESUMO
Modules consisting of antibiotic resistance genes (ARGs) flanked by inverted repeat Xer-specific recombination sites were thought to be mobile genetic elements that promote horizontal transmission. Less frequently, the presence of mobile modules in plasmids, which facilitate a pdif-mediated ARGs transfer, has been reported. Here, numerous ARGs and toxin-antitoxin genes have been found in pdif site pairs. However, the mechanisms underlying this apparent genetic mobility is currently not understood, and the studies relating to pdif-mediated ARGs transfer onto most bacterial genera are lacking. We developed the web server pdifFinder based on an algorithm called PdifSM that allows the prediction of diverse pdif-ARGs modules in bacterial genomes. Using test set consisting of almost 32 thousand plasmids from 717 species, PdifSM identified 481 plasmids from various bacteria containing pdif sites with ARGs. We found 28-bp-long elements from different genera with clear base preferences. The data we obtained indicate that XerCD-dif site-specific recombination mechanism may have evolutionary adapted to facilitate the pdif-mediated ARGs transfer. Through multiple sequence alignment and evolutionary analyses of duplicated pdif-ARGs modules, we discovered that pdif sites allow an interspecies transfer of ARGs but also across different genera. Mutations in pdif sites generate diverse arrays of modules which mediate multidrug-resistance, as these contain variable numbers of diverse ARGs, insertion sequences and other functional genes. The identification of pdif-ARGs modules and studies focused on the mechanism of ARGs co-transfer will help us to understand and possibly allow controlling the spread of MDR bacteria in clinical settings. The pdifFinder code, standalone software package and description with tutorials are available at https://github.com/mjshao06/pdifFinder.
Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Plasmídeos/genética , Genoma Bacteriano , Genes BacterianosRESUMO
Cefiderocol is a novel siderophore cephalosporin that displays activity against Gram-negative bacteria. To establish cefiderocol susceptibility levels of Acinetobacter baumannii strains from China, we performed susceptibility testing and genomic analyses on 131 clinical isolates. Cefiderocol shows high activity against the strains. The production of PER-1 is the key mechanism of cefiderocol resistance. In silico studies predicted that avibactam and durlobactam could inhibit cefiderocol hydrolysis by PER-1, which was confirmed by determining cefiderocol MICs in combination with inhibitors.
Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , CefiderocolRESUMO
We describe the complete genome sequence of bacteriophage Motto, which infects clinical strains of Pseudomonas aeruginosa. Motto is a T1-like siphovirus related to members of the family Drexlerviridae and has a capsid width of ~57 nm and a tail length of ~255 nm. The 49.9-kb genome contains 84 protein-coding genes.
RESUMO
Plants grow together with microbes that have both negative and positive impacts on the host, while prokaryotes are in turn also hosts for viruses, co-evolving together in a complex interrelationship. Most research focuses on the interaction of either bacterial pathogens interacting with the plant host, or the impact on viruses on their pathogenic bacterial hosts. Few studies have investigated the co-evolution of bacterial pathogens with their host plants as well as with their bacterial viruses. In this work, we aimed to identify the genes that were associated with both phage sensitivity and host pathogenicity of the bacterium Xanthomonas oryzae pv. oryzae (Xoo), which is the most important bacterial rice pathogen. Using the Tn5 transposon mutation technology, we created a library of Xoo strain C2 comprising 4524 mutants, which were subsequently tested for phage infectability. The phage infection tests showed that less than 1% of the mutants (n = 36) were resistant to phage infection, which was attributed to the Tn5 insertion in 19 genes. Interestingly, three out of 19 genes that conveyed resistance to the phage resulted in reduced pathogenicity to rice seedlings compared to the wild type. We identified three genes involved in both phage infection and bacterial virulence, which were studied by knockout mutants and complementation experiments. All of the three knockout mutants were resistant to infection by phage X2, while the complemented strains restored the susceptibility to the bacterial virus. Surprisingly, the genes are also essential for pathogenicity, which we confirmed by single knockout mutants corresponding to the Tn5 mutants. All three genes are involved in lipopolysaccharide synthesis, thus changing the cell envelope surface molecule composition. Our work shows a possible balance in terms of the connection between bacterial virulence and phage resistance, supporting the deployment of phages for the biocontrol of plant pathogens.
Assuntos
Bacteriófagos , Oryza , Xanthomonas , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Xanthomonas/genéticaRESUMO
Bacteriophages and bacteriophage-derived peptidoglycan hydrolases (endolysins) present promising alternatives for the treatment of infections caused by multidrug resistant Gram-negative and Gram-positive pathogens. In this study, Gp105, a putative lysozyme murein hydrolase from Enterobacter phage myPSH1140 was characterized in silico, in vitro as well as in vivo using the purified protein. Gp105 contains a T4-type lysozyme-like domain (IPR001165) and belongs to Glycoside hydrolase family 24 (IPR002196). The putative endolysin indeed had strong antibacterial activity against Gram-negative pathogens, including E. cloacae, K. pneumoniae, P. aeruginosa, S. marcescens, Citrobacter sp., and A. baumannii. Also, an in vitro peptidoglycan hydrolysis assay showed strong activity against purified peptidoglycans. This study demonstrates the potential of Gp105 to be used as an antibacterial protein to combat Gram-negative pathogens.
Assuntos
Bacteriófagos , N-Acetil-Muramil-L-Alanina Amidase , Antibacterianos/farmacologia , Bacteriófagos/metabolismo , Endopeptidases/metabolismo , Enterobacter/metabolismo , Glicosídeo Hidrolases/metabolismo , Klebsiella pneumoniae/metabolismo , Muramidase/farmacologia , Myoviridae/metabolismo , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/metabolismoRESUMO
Carbapenem-resistant Acinetobacter baumannii (CRAB), which belonged to global clones 1 (GC1) or 2 (GC2), has been widely reported and become a global threat. However, non-GC1 and non-GC2 CRAB strains are not well-studied, especially for those with rare phenotype. Here, one pyomelanin-producing CRAB strain (A. baumannii DETAB-R21) was isolated from oral swab in the ICU. Antimicrobial susceptibility testing showed it was resistant to carbapenems, ceftazidime, levofloxacin, and ciprofloxacin. DETAB-R21 was ST164Pas and ST1418Oxf with KL47 and OCL5, respectively. Whole-genome sequencing (WGS) analysis revealed chromosome contained three copies of blaOXA-23 on three 4,805-bp Tn2006 composite transposons with various novel 9-bp target site duplications (TSD). A Tn125-like structure, including blaNDM-1, a novel 4,343 bp composite transposon encoding blaCARB-16, and three prophage regions were also identified. Importantly, hmgA was interrupted by a Tn2006 and contributed to pyomelanin production and further confirmed by hmgA overexpression. Furthermore, A. baumannii irradiated with UV light, DETAB-R21 showed a higher relatively survival rate compared to a control strain that did not produce pyomelanin. No effects of pyomelanin were observed on disinfectants susceptibility, growth, or virulence. In conclusion, pyomelanin-producing CRAB carrying the blaNDM-1 and blaOXA-23 genes embedded in the bacterial chromosome is of grave concern for health care settings, highlighting the need for effective measures to prevent further dissemination. IMPORTANCE Pyomelanin production is a quite rare phenotype in A. baumannii. Moreover, the mechanisms leading to the pyomelanin production was still unclear. Here, we for the first time, confirmed the mechanism of pyomelanin production, and further investigated the impact of pyomelanin on disinfectants susceptibility, growth, virulence, and UV irradiation. More importantly, many mobile genetic elements (MGEs), including three copies of Tn2006 composite transposons, one copy of blaNDM-1 on the Tn125-like structure and three prophage regions, were identified in the chromosome, demonstrated strong plasticity of A. baumannii genome. Our study provides important insights into the new rare ST164Pas A. baumannii strain with high level carbapenem resistance, which is of great threat for patients. These findings will provide important insights into the resistance gene transfer via transposition events and further spread in the clinic.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Desinfetantes , beta-Lactamases/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Cromossomos , Desinfetantes/farmacologia , Humanos , Melaninas , Testes de Sensibilidade Microbiana , beta-Lactamases/genéticaRESUMO
Phages have shown to be effective in treating bacterial infections. However, when evaluating the therapeutic potential of novel phage isolates which have the ability to infect and kill a pathogen, it is important to include parameters such as stability (crucial for storage and delivery), infection dynamics in vitro and in vivo (for efficacy and dosing), and an in-depth genome analysis (to exclude the presence of virulence or lysogeny genes), among others. In this study, we characterized bacteriophage Phab24, which infects a colistin-resistant strain of the notorious nosocomial pathogen Acinetobacter baumannii. Our study is crucial for the use of Phab24 in therapy, while also advancing our understanding of phage predation.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/terapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriófagos/genética , Humanos , VirulênciaRESUMO
OXA-23 is the predominant carbapenemase in carbapenem-resistant Acinetobacter baumannii. The co-evolutionary dynamics of A. baumannii and OXA-23-encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla OXA-23-containing plasmid from clinical A. baumannii isolate A221, and subjected the transformant to experimental evolution in the presence of a sub-inhibitory concentration of imipenem for nearly 400 generations. We used population sequencing to track genetic changes at six time points and evaluated phenotypic changes. Increased fitness of evolving populations, temporary duplication of bla OXA-23 in pAZJ221, interfering allele dynamics, and chromosomal locus-level parallelism were observed. To characterize genotype-to-phenotype associations, we focused on six mutations in parallel targets predicted to affect small RNAs and a cyclic dimeric (3' â 5') GMP-metabolizing protein. Six isogenic mutants with or without pAZJ221 were engineered to test for the effects of these mutations on fitness costs and plasmid kinetics, and the evolved plasmid containing two copies of bla OXA-23 was transferred to ancestral ATCC 17978. Five of the six mutations contributed to improved fitness in the presence of pAZJ221 under imipenem pressure, and all but one of them impaired plasmid conjugation ability. The duplication of bla OXA-23 increased host fitness under carbapenem pressure but imposed a burden on the host in antibiotic-free media relative to the ancestral pAZJ221. Overall, our study provides a framework for the co-evolution of A. baumannii and a clinical bla OXA-23-containing plasmid in the presence of imipenem, involving early bla OXA-23 duplication followed by chromosomal adaptations that improved the fitness of plasmid-carrying cells.
RESUMO
BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen that can cause a variety of infections in humans, such as burn wound infections and infections of the lungs, the bloodstream and surgical site infections. Nosocomial spread is often concurrent with high degrees of antibiotic resistance. Such resistant strains are difficult to treat, and in some cases, even reserved antibiotics are ineffective. A particularly promising therapy to combat infections of resistant bacteria is the deployment of bacteriophages, known as phage therapy. In this work, we evaluated the in vivo efficacy of two Pseudomonas phages in bacteremia mice models. For this study, non-neutropenic mice (BalB/C) were infected with P. aeruginosa AB030 strain and treated using two bacteriophages, AP025 and AP006. RESULTS: The results showed that a single dose of phages at higher concentrations, bacteria: phage at 1:10 and 1:100 were effective in eliminating the bloodstream infection and achieving 100% mice survival. CONCLUSION: This study highlights the efficacy of using a single dose of phages to restore mice from bacteremia.
Assuntos
Bacteriemia , Bacteriófagos , Infecções por Pseudomonas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/microbiologia , Bacteriemia/terapia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Myoviridae , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosaRESUMO
Pulmonary epithelial barrier dysfunction is a critical pathophysiological process in pneumonia and associated invasive infections, such as those caused by Acinetobacter baumannii. However, the mechanisms underlying A. baumannii-induced pulmonary epithelial barrier dysfunction and bacterial translocation remain unclear. In this study, lungs of mice and A549 human epithelial cell monolayers were challenged with the A. baumannii wild-type strain and an outer membrane protein A (ompA) deletion strain. In addition, epithelial cells in culture were treated with purified OmpA protein or transfected with a eukaryotic expression vector encoding ompA (pCMV-ompA). Bacterial translocation across cell monolayers and intrapulmonary burden were measured, barrier function was evaluated in vivo and in vitro; cell migration ability was determined. The specific inhibitors C29 and JSH-23 were used to suppress the activity of Toll-like receptor 2 (TLR2) and of NF-κB, respectively. IQ-GTPase-activating protein 1 (IQGAP1) small interfering RNA was used to knock down endogenous IQGAP1 expression. In this work, we show that OmpA from A. baumannii increased the production of pro-inflammatory cytokines, remodeled the cytoskeleton, and internalized intercellular adherens junctions (AJs); these changes eventually induced pulmonary epithelial barrier dysfunction to promote bacterial translocation. IQGAP1-targeting small interfering RNA and chemical inhibition of TLR2 or NF-κB prevented high permeability of the pulmonary epithelial barrier. TLR2/NF-κB signaling was involved in OmpA-induced inflammation, IQGAP1-mediated OmpA-induced opening of the pulmonary epithelial barrier via cytoskeleton dynamic remodeling, and cellular redistribution of the major AJ protein, E-cadherin. These observations indicate that A. baumannii uses OmpA to overcome epithelial defences and cross the pulmonary epithelial barrier.