Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 171: 116148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232661

RESUMO

Decades of biological and clinical research have led to important advances in recombinant adeno-associated viruses rAAV-based gene therapy gene therapy. However, several challenges must be overcome to fully exploit the potential of rAAV vectors. Innovative approaches to modify viral genome and capsid elements have been used to overcome issues such as unwanted immune responses and off-targeting. While often successful, genetic modification of capsids can drastically reduce vector yield and often fails to produce vectors with properties that translate across different animal species, such as rodents, non-human primates, and humans. Here, we describe a chemical bioconjugation strategy to modify tyrosine residues on AAV capsids using specific ligands, thereby circumventing the need to genetically engineer the capsid sequence. Aromatic electrophilic substitution of the phenol ring of tyrosine residues on AAV capsids improved the in vivo transduction efficiency of rAAV2 vectors in both liver and retinal targets. This tyrosine bioconjugation strategy represents an innovative technology for the engineering of rAAV vectors for human gene therapy.


Assuntos
Dependovirus , Terapia Genética , Animais , Transdução Genética , Tirosina/genética , Fígado , Retina , Proteínas do Capsídeo/genética , Vetores Genéticos , Técnicas de Transferência de Genes
2.
Bioorg Med Chem ; 39: 116161, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932805

RESUMO

Interleukin (IL)-15 is a pleiotropic cytokine structurally close to IL-2 and sharing with the IL-2Rß and γc receptor (R) subunits. IL-15 plays important roles in innate and adaptative immunity, supporting the activation and proliferation of NK, NK-T, and CD8+ T cells. Over-expression of IL-15 has been shown to participate to the development of inflammatory and autoimmune diseases and diverse T cell malignancies. This study is in continuity of our previous work through which a family of small-molecule inhibitors impeding IL-15/IL-2Rß interaction with sub-micromolar activity has been identified using pharmacophore-based virtual screening and hit optimization methods. With the aim to improve the efficacy and selectivity of our lead inhibitor, specific modifications have been introduced on the basis of optimized SAR and modelisation. The new series of compounds generated have been evaluated for their capacity to inhibit the proliferation as well as the down-stream signaling of IL-15-dependent cells and to bind to IL-15.


Assuntos
Interleucina-15/antagonistas & inibidores , Ftalazinas/química , Ftalazinas/farmacologia , Linhagem Celular , Humanos , Ftalazinas/síntese química , Análise Espectral/métodos , Relação Estrutura-Atividade
3.
Chem Sci ; 11(4): 1122-1131, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34084369

RESUMO

Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells and sustained maintenance of the viral genome. However, the conclusion from clinical data using these vectors is that there is a need to develop new AAVs with a higher transduction efficiency and specificity for relevant target tissues. To overcome these limitations, we chemically modified the surface of the capsid of AAV vectors. These modifications were achieved by chemical coupling of a ligand by the formation of a thiourea functionality between the amino group of the capsid proteins and the reactive isothiocyanate motif incorporated into the ligand. This strategy does not require genetic engineering of the capsid sequence. The proof of concept was first evidenced using a fluorophore (FITC). Next, we coupled the N-acetylgalactosamine ligand onto the surface of the AAV capsid for asialoglycoprotein receptor-mediated hepatocyte-targeted delivery. Chemically-modified capsids also showed reduced interactions with neutralizing antibodies. Taken together, our findings reveal the possibility of creating a specific engineered platform for targeting AAVs via chemical coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA