Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Cell Rep ; 43(5): 114191, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38717901

RESUMO

While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher-order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we show that axonal tracer, functional connectivity, myelin mapping, gene expression, and optogenetics data contradict this notion. Our analyses reveal three premotor areas in the mouse, anterior-lateral motor cortex (ALM), anterior-lateral M2 (aM2), and posterior-medial M2 (pM2), with distinct structural, functional, and behavioral properties. By using the same techniques across mice and humans, we show that ALM has strikingly similar functional and microstructural properties to human anterior ventral premotor areas and that aM2 and pM2 amalgamate properties of human pre-SMA and cingulate cortex. These results provide evidence for the existence of multiple premotor areas in the mouse and chart a comparative map between the motor systems of humans and mice.

2.
J Psychiatry Neurosci ; 49(3): E157-E171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692693

RESUMO

BACKGROUND: Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced DCC on neuroanatomy in the adolescent and adult mouse brain. METHODS: We examined neuronal connectivity, structural covariance, and molecular processes in a DCC-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. RESULTS: We included 11 DCC-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of DCC haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that DCC haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of DCC, UNC5C (encoding DCC's co-receptor), and NTN1 (encoding its ligand, netrin-1) as underlying our structural findings. LIMITATIONS: Our study involved a single sex (males) at only 2 ages. CONCLUSION: The neuroanatomical phenotype of DCC haploinsufficiency described in mice parallels that observed in DCC-haploinsufficient humans. It is critical to understand the DCC-haploinsufficient mouse as a clinically relevant model system.


Assuntos
Encéfalo , Receptor DCC , Dopamina , Haploinsuficiência , Animais , Receptor DCC/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/anatomia & histologia , Dopamina/metabolismo , Camundongos , Masculino , Expressão Gênica , Vias Neurais , Fatores Etários , Feminino , Camundongos Endogâmicos C57BL , Envelhecimento/genética , Envelhecimento/fisiologia
3.
Psychiatry Res Neuroimaging ; 341: 111826, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38735228

RESUMO

We used a virtual navigation paradigm in a city environment to assess neuroanatomical correlates of cognitive deficits in schizophrenia spectrum disorders (SSD). We studied a total of N = 36 subjects: 18 with SSD and 18 matched unaffected controls. Participants completed 10 rapid, single-trial navigation tasks within the virtual city while undergoing functional magnetic resonance imaging (fMRI). All trials tested ability to find different targets seen earlier, during the passive viewing of a path around different city blocks. SSD patients had difficulty finding previously-encountered targets, were less likely to find novel shortcuts to targets, and more likely to attempt retracing of the path observed during passive viewing. Based on a priori region-of-interest analyses, SSD participants had hyperactivation of the left hippocampus when passively viewing turns, hyperactivation of the left caudate when finding targets, and hypoactivation of a focal area of the dorsolateral prefrontal cortex when targets were initially shown during passive viewing. We propose that these brain-behaviour relations may bias or reinforce stimulus-response navigation approaches in SSD and underlie impaired performance when allocentric spatial memory is required, such as when forming efficient shortcuts. This pattern may extend to more general cognitive impairments in SSD that could be used to design remediation strategies.

4.
Transl Psychiatry ; 14(1): 173, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570480

RESUMO

The cerebellum, through its connectivity with the cerebral cortex, plays an integral role in regulating cognitive and affective processes, and its dysregulation can result in neurodevelopmental disorder (NDD)-related behavioural deficits. Identifying cerebellar-cerebral functional connectivity (FC) profiles in children with NDDs can provide insight into common connectivity profiles and their correlation to NDD-related behaviours. 479 participants from the Province of Ontario Neurodevelopmental Disorders (POND) network (typically developing = 93, Autism Spectrum Disorder = 172, Attention Deficit/Hyperactivity Disorder = 161, Obsessive-Compulsive Disorder = 53, mean age = 12.2) underwent resting-state functional magnetic resonance imaging and behaviour testing (Social Communication Questionnaire, Toronto Obsessive-Compulsive Scale, and Child Behaviour Checklist - Attentional Problems Subscale). FC components maximally correlated to behaviour were identified using canonical correlation analysis. Results were then validated by repeating the investigation in 556 participants from an independent NDD cohort provided from a separate consortium (Healthy Brain Network (HBN)). Replication of canonical components was quantified by correlating the feature vectors between the two cohorts. The two cerebellar-cerebral FC components that replicated to the greatest extent were correlated to, respectively, obsessive-compulsive behaviour (behaviour feature vectors, rPOND-HBN = -0.97; FC feature vectors, rPOND-HBN = -0.68) and social communication deficit contrasted against attention deficit behaviour (behaviour feature vectors, rPOND-HBN = -0.99; FC feature vectors, rPOND-HBN = -0.78). The statistically stable (|z| > 1.96) features of the FC feature vectors, measured via bootstrap re-sampling, predominantly comprised of correlations between cerebellar attentional and control network regions and cerebral attentional, default mode, and control network regions. In both cohorts, spectral clustering on FC loading values resulted in subject clusters mixed across diagnostic categories, but no cluster was significantly enriched for any given diagnosis as measured via chi-squared test (p > 0.05). Overall, two behaviour-correlated components of cerebellar-cerebral functional connectivity were observed in two independent cohorts. This suggests the existence of generalizable cerebellar network differences that span across NDD diagnostic boundaries.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Cerebelo , Encéfalo/diagnóstico por imagem
5.
Brain Behav Immun ; 119: 637-647, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663773

RESUMO

Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans. Single-nuclei transcriptomics of the mouse cortex reveals that dietary obesity promotes an array of neuron-adverse transcriptional dysregulations, which are mediated by an interplay of excitatory neurons and glial cells, and which involve microglial activation and lowered neuronal capacity for neuritogenesis and maintenance of membrane potential. The transcriptional dysregulations of microglia, more than of other cell types, are like those in AD, as assessed with single-nuclei cortical transcriptomics in a mouse model of AD and two sets of human donors with the disease. Serial two-photon tomography of microglia demonstrates microgliosis throughout the mouse cortex. The spatial pattern of adiposity-cortical volume associations in human cohorts interrogated together with in silico bulk and single-nucleus transcriptomic data from the human cortex implicated microglia (along with other glial cells and subtypes of excitatory neurons), and it correlated positively with the spatial profile of cortical atrophy in patients with mild cognitive impairment and AD. Thus, multi-cell neuron-adverse dysregulations likely contribute to the loss of cortical tissue in obesity. The dysregulations of microglia may be pivotal to the obesity-related risk of AD.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38433429

RESUMO

BACKGROUND: Gender clinic and single-item questionnaire-based data report increased co-occurrence of gender diversity and neurodevelopmental conditions. The nuances of these associations are under-studied. We used a transdiagnostic approach, combining categorical and dimensional characterization of neurodiversity, to further the understanding of its associations with gender diversity in identity and expression in children. METHODS: Data from 291 children (Autism N = 104, ADHD N = 104, Autism + ADHD N = 17, neurotypical N = 66) aged 4-12 years enrolled in the Province of Ontario Neurodevelopmental Network were analyzed. Gender diversity was measured multi-dimensionally using a well-validated parent-report instrument, the Gender Identity Questionnaire for Children (GIQC). We used gamma regression models to determine the significant correlates of gender diversity among age, puberty, sex-assigned-at-birth, categorical neurodevelopmental diagnoses, and dimensional neurodivergent traits (using the Social Communication Questionnaire and the Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Rating Scales). Internalizing and externalizing problems were included as covariates. RESULTS: Neither a categorical diagnosis of autism nor ADHD significantly correlated with current GIQC-derived scores. Instead, higher early-childhood dimensional autistic social-communication traits correlated with higher current overall gender incongruence (as defined by GIQC-14 score). This correlation was potentially moderated by sex-assigned-at-birth: greater early-childhood autistic social-communication traits were associated with higher current overall gender incongruence in assigned-males-at-birth, but not assigned-females-at-birth. For fine-grained gender diversity domains, greater autistic restricted-repetitive behavior traits were associated with greater diversity in gender identity across sexes-assigned-at-birth; greater autistic social-communication traits were associated with lower stereotypical male expression across sexes-assigned-at-birth. CONCLUSIONS: Dimensional autistic traits, rather than ADHD traits or categorical neurodevelopmental diagnoses, were associated with gender diversity domains across neurodivergent and neurotypical children. The association between early-childhood autistic social-communication traits and overall current gender diversity was most evident in assigned-males-at-birth. Nuanced interrelationships between neurodivergence and gender diversity should be better understood to clarify developmental links and to offer tailored support for neurodivergent and gender-diverse populations.

7.
Elife ; 132024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488854

RESUMO

In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions (r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-specific brain development in mice to brain regions that best echo sex-specific brain development in humans.


Assuntos
Encéfalo , Caracteres Sexuais , Humanos , Masculino , Feminino , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Mamíferos
8.
Neurobiol Dis ; 193: 106437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367882

RESUMO

TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteinopatias TDP-43 , Animais , Pré-Escolar , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Cognição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/patologia
9.
Mol Psychiatry ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321122

RESUMO

Psychedelic drugs can aid fast and lasting remission from various neuropsychiatric disorders, though the underlying mechanisms remain unclear. Preclinical studies suggest serotonergic psychedelics enhance neuronal plasticity, but whether neuroplastic changes can also be seen at cognitive and behavioural levels is unexplored. Here we show that a single dose of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) affects structural brain plasticity and cognitive flexibility in young adult mice beyond the acute drug experience. Using ex vivo magnetic resonance imaging, we show increased volumes of several sensory and association areas one day after systemic administration of 2 mgkg-1 (±)-DOI. We then demonstrate lasting effects of (±)-DOI on cognitive flexibility in a two-step probabilistic reversal learning task where 2 mgkg-1 (±)-DOI improved the rate of adaptation to a novel reversal in task structure occurring one-week post-treatment. Strikingly, (±)-DOI-treated mice started learning from reward omissions, a unique strategy not typically seen in mice in this task, suggesting heightened sensitivity to previously overlooked cues. Crucially, further experiments revealed that (±)-DOI's effects on cognitive flexibility were contingent on the timing between drug treatment and the novel reversal, as well as on the nature of the intervening experience. (±)-DOI's facilitation of both cognitive adaptation and novel thinking strategies may contribute to the clinical benefits of psychedelic-assisted therapy, particularly in cases of perseverative behaviours and a resistance to change seen in depression, anxiety, or addiction. Furthermore, our findings highlight the crucial role of time-dependent neuroplasticity and the influence of experiential factors in shaping the therapeutic potential of psychedelic interventions for impaired cognitive flexibility.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38000717

RESUMO

BACKGROUND: Impairing repetitive behaviors are one of the core diagnostic symptoms in autism spectrum disorder and obsessive-compulsive disorder, but they also manifest in attention-deficit/hyperactivity disorder. Although the dorsal striatal circuit has been implicated in repetitive behaviors, extensive heterogeneity in and cross-diagnostic manifestations of these behaviors have suggested phenotypic and likely neurobiological heterogeneity across neurodevelopmental disorders (NDDs). METHODS: Intrinsic dorsal striatal functional connectivity was examined in 3 NDDs (autism spectrum disorder, obsessive-compulsive disorder, and attention-deficit/hyperactivity disorder) and typically developing control participants in a large single-cohort sample (N = 412). To learn how diagnostic labels and overlapping behaviors manifest in dorsal striatal functional connectivity measured with functional magnetic resonance imaging, the main and interaction effects of diagnosis and behavior were examined in 8 models (2 seed functional connectivity [caudate and putamen] × 4 sub-behavioral domains [sameness/ritualistic, self-injury, stereotypy, and compulsions]). RESULTS: The obsessive-compulsive disorder group demonstrated distinctive patterns in visual and visuomotor coordination regions compared with the other diagnostic groups. Lower-order repetitive behaviors (self-injury and stereotypy) manifesting across all participants were implicated in regions involved in motor and cognitive control, although the findings did not survive effects of multiple comparisons, suggesting heterogeneity in these behavioral domains. An interaction between self-injurious behavior and an attention-deficit/hyperactivity disorder diagnosis were observed on caudate-cerebellum functional connectivity. CONCLUSIONS: These findings confirmed high heterogeneity and overlapping behavioral manifestations in NDDs and their complex underlying neural mechanisms. A call for diagnosis-free symptom measures that can capture not only observable symptoms and severity across NDDs but also the underlying functions and motivations of such behaviors across diagnoses is needed.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Transtorno Obsessivo-Compulsivo , Criança , Humanos , Adolescente , Mapeamento Encefálico , Cognição
11.
Neuroimage ; 285: 120453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979895

RESUMO

For information from sensory organs to be processed by the brain, it is usually passed to appropriate areas of the cerebral cortex. Almost all of this information passes through the thalamus, a relay structure that reciprocally connects to the vast majority of the cortex. The thalamus facilitates this information transfer through a set of thalamocortical connections that vary in cellular structure, molecular profiles, innervation patterns, and firing rates. Additionally, corticothalamic connections allow for intracortical information transfer through the thalamus. These efferent and afferent connections between the thalamus and cortex have been the focus of many studies, and the importance of cortical connectivity in defining thalamus anatomy is demonstrated by multiple studies that parcellate the thalamus based on cortical connectivity profiles. Here, we examine correlated morphological variation between the thalamus and cortex, or thalamocortical structural covariance. For each voxel in the thalamus as a seed, we construct a cortical structural covariance map that represents correlated cortical volume variation, and examine whether high structural covariance is observed in cortical areas that are functionally relevant to the seed. Then, using these cortical structural covariance maps as features, we subdivide the thalamus into six non-overlapping regions (clusters of voxels), and assess whether cortical structural covariance is associated with cortical connectivity that specifically originates from these regions. We show that cortical structural covariance is high in areas of the cortex that are functionally related to the seed voxel, cortical structural covariance varies along cortical depth, and sharp transitions in cortical structural covariance profiles are observed when varying seed locations in the thalamus. Subdividing the thalamus based on structural covariance, we additionally demonstrate that the six thalamic clusters of voxels stratify cortical structural covariance along the dorsal-ventral, medial-lateral, and anterior-posterior axes. These cluster-associated structural covariance patterns are prominently detected in cortical regions innervated by fibers projecting out of their related thalamic subdivisions. Together, these results advance our understanding of how the thalamus and the cortex couple in their volumes. Our results indicate that these volume correlations reflect functional organization and structural connectivity, and further provides a novel segmentation of the mouse thalamus that can be used to examine thalamic structural variation and thalamocortical structural covariation in disease models.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Camundongos , Animais , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Encéfalo , Tálamo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem
12.
Neuro Oncol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079480

RESUMO

BACKGROUND: Cerebellar mutism syndrome (CMS) is a common and debilitating complication of posterior fossa tumour surgery in children. Affected children exhibit communication and social impairments that overlap phenomenologically with subsets of deficits exhibited by children with Autism spectrum disorder (ASD). Although both CMS and ASD are thought to involve disrupted cerebro-cerebellar circuitry, they are considered independent conditions due to an incomplete understanding of their shared neural substrates. METHODS: In this study, we analyzed post-operative cerebellar lesions from 90 children undergoing posterior fossa resection of medulloblastoma, 30 of whom developed CMS. Lesion locations were mapped to a standard atlas, and the networks functionally connected to each lesion were computed in normative adult and paediatric datasets. Generalizability to ASD was assessed using an independent cohort of children with ASD and matched controls (n=427). RESULTS: Lesions in children who developed CMS involved the vermis and inferomedial cerebellar lobules. They engaged large-scale cerebellothalamocortical circuits with a preponderance for the prefrontal and parietal cortices in the paediatric and adult connectomes, respectively. Moreover, with increasing connectomic age, CMS-associated lesions demonstrated stronger connectivity to the midbrain/red nuclei, thalami and inferior parietal lobules and weaker connectivity to prefrontal cortex. Importantly, the CMS-associated lesion network was independently reproduced in ASD and correlated with communication and social deficits, but not repetitive behaviours. CONCLUSIONS: Our findings indicate that CMS-associated lesions result in an ASD-like network disturbance that occurs during sensitive windows of brain development. A common network disturbance between CMS and ASD may inform improved treatment strategies for affected children.

13.
medRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106166

RESUMO

Background: Autism and attention deficit hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together, and sex differences are often overlooked. Normative modelling provides a unified framework for studying age-specific and sex-specific divergences in neurodivergent brain development. Methods: Here we use normative modelling and a large, multi-site neuroimaging dataset to characterise cortical anatomy associated with autism and ADHD, benchmarked against models of typical brain development based on a sample of over 75,000 individuals. We also examined sex and age differences, relationship with autistic traits, and explored the co-occurrence of autism and ADHD (autism+ADHD). Results: We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume localised to the superior temporal cortex, whereas individuals with ADHD showed more global effects of cortical thickness increases but lower cortical volume and surface area across much of the cortex. The autism+ADHD group displayed a unique pattern of widespread increases in cortical thickness, and certain decreases in surface area. We also found evidence that sex modulates the neuroanatomy of autism but not ADHD, and an age-by-diagnosis interaction for ADHD only. Conclusions: These results indicate distinct cortical differences in autism and ADHD that are differentially impacted by age, sex, and potentially unique patterns related to their co-occurrence.

14.
STAR Protoc ; 4(4): 102681, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948184

RESUMO

Combining histology and ex vivo MRI from the same mouse brain is a powerful way to study brain microstructure. Mouse brains prepared for ex vivo MRI are often kept in storage solution for months, potentially becoming brittle and showing reduced antigenicity. Here, we describe a protocol for mouse brain dissection, tissue processing, paraffin embedding, sectioning, and staining. We then detail registration of histology to ex vivo MRI data from the same sample and extraction of quantitative histological measurements.


Assuntos
Encéfalo , Dissecação , Camundongos , Animais , Inclusão em Parafina , Encéfalo/diagnóstico por imagem , Coloração e Rotulagem , Imageamento por Ressonância Magnética/métodos
15.
Clin Epigenetics ; 15(1): 172, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884963

RESUMO

BACKGROUND: Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d+/ßGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d+/ßGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a "primary tissue" with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. METHODS: Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. RESULTS: We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. CONCLUSIONS: As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.


Assuntos
Metilação de DNA , Inibidores de Histona Desacetilases , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neuroanatomia , Biomarcadores
16.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662398

RESUMO

In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-biased brain development in mammals, there have been no attempts to formally compare mouse and human sex differences across the whole brain to ascertain how well they translate. Addressing this question would shed critical light on use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use cross-species structural magnetic resonance imaging to carry out the first comparative neuroimaging study of sex-biased neuroanatomical organization of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous brain regions (r=0.30; e.g.: M>F amygdala, hippocampus, bed nucleus of the stria terminalis, and hypothalamus and F>M anterior cingulate, somatosensory, and primary auditory cortices). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-biased brain development in mice to brain regions that best echo sex-biased brain development in humans.

17.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693556

RESUMO

Autism presents with significant phenotypic and neuroanatomical heterogeneity, and neuroimaging studies of the thalamus, globus pallidus and striatum in autism have produced inconsistent and contradictory results. These structures are critical mediators of functions known to be atypical in autism, including sensory gating and motor function. We examined both volumetric and fine-grained localized shape differences in autism using a large (n=3145, 1045-1318 after strict quality control), cross-sectional dataset of T1-weighted structural MRI scans from 32 sites, including both males and females (assigned-at-birth). We investigated three potentially important sources of neuroanatomical heterogeneity: sex, age, and intelligence quotient (IQ), using a meta-analytic technique after strict quality control to minimize non-biological sources of variation. We observed no volumetric differences in the thalamus, globus pallidus, or striatum in autism. Rather, we identified a variety of localized shape differences in all three structures. Including age, but not sex or IQ, in the statistical model improved the fit for both the pallidum and striatum, but not for the thalamus. Age-centered shape analysis indicated a variety of age-dependent regional differences. Overall, our findings help confirm that the neurodevelopment of the striatum, globus pallidus and thalamus are atypical in autism, in a subtle location-dependent manner that is not reflected in overall structure volumes, and that is highly non-uniform across the lifespan.

18.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772684

RESUMO

Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Esclerose Lateral Amiotrófica/patologia , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Mutação/genética , Neurônios/metabolismo
19.
NMR Biomed ; 36(12): e5015, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548099

RESUMO

Human and animal studies suggest that exercise promotes healthy brain development and function, including promoting hippocampal growth. Childhood cancer survivors that have received cranial radiotherapy exhibit hippocampal volume deficits and are at risk of impaired cognitive function, thus they may benefit from regular exercise. While morphological changes induced by exercise have been characterized using magnetic resonance imaging (MRI) in humans and animal models, evaluation of changes across the brain through development and following cranial radiation is lacking. In this study, we used high-resolution longitudinal MRI through development to evaluate the effects of exercise in a pediatric mouse model of cranial radiation. Female mice received whole-brain radiation (7 Gy) or sham radiation (0 Gy) at an infant equivalent age (P16). One week after irradiation, mice were housed in either a regular cage or a cage equipped with a running wheel. In vivo MRI was performed prior to irradiation, and at three subsequent timepoints to evaluate the effects of radiation and exercise. We used a linear mixed-effects model to assess volumetric and cortical thickness changes. Exercise caused substantial increases in the volumes of certain brain regions, notably the hippocampus in both irradiated and nonirradiated mice. Volume increases exceeded the deficits induced by cranial irradiation. The effect of exercise and irradiation on subregional hippocampal volumes was also characterized. In addition, we characterized cortical thickness changes across development and found that it peaked between P23 and P43, depending on the region. Exercise also induced regional alterations in cortical thickness after 3 weeks of voluntary exercise, while irradiation did not substantially alter cortical thickness. Our results show that exercise has the potential to alter neuroanatomical outcomes in both irradiated and nonirradiated mice. This supports ongoing research exploring exercise as a strategy for improving neurocognitive development for children, particularly those treated with cranial radiotherapy.


Assuntos
Encéfalo , Hipocampo , Humanos , Camundongos , Feminino , Animais , Criança , Hipocampo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Irradiação Craniana/efeitos adversos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
20.
Front Aging Neurosci ; 15: 1195748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484693

RESUMO

Introduction: As the population skews toward older age, elucidating mechanisms underlying human brain aging becomes imperative. Structural MRI has facilitated non-invasive investigation of lifespan brain morphology changes, yet this domain remains uncharacterized in rodents despite increasing use as models of disordered human brain aging. Methods: Young (2m, n = 10), middle-age (10m, n = 10) and old (22m, n = 9) mice were utilized for maturational (young vs. middle-age) and aging-related (middle-age vs. old mice) comparisons. Regional brain volume was averaged across hemispheres and reduced to 32 brain regions. Pairwise group differences in regional volume were tested using general linear models, with total brain volume as a covariate. Sample-wide associations between regional brain volume and Y-maze performance were assessed using logistic regression, residualized for total brain volume. Both analyses corrected for multiple comparisons. Structural covariance networks were generated using the R package "igraph." Group differences in network centrality (degree), integration (mean distance), and segregation (transitivity, modularity) were tested across network densities (5-40%), using 5,000 (1,000 for degree) permutations with significance criteria of p < 0.05 at ≥5 consecutive density thresholds. Results: Widespread significant maturational changes in volume occurred in 18 brain regions, including considerable loss in isocortex regions and increases in brainstem regions and white matter tracts. The aging-related comparison yielded 6 significant changes in brain volume, including further loss in isocortex regions and increases in white matter tracts. No significant volume changes were observed across either comparison for subcortical regions. Additionally, smaller volume of the anterior cingulate area (χ2 = 2.325, pBH = 0.044) and larger volume of the hippocampal formation (χ2 = -2.180, pBH = 0.044) were associated with poorer cognitive performance. Maturational network comparisons yielded significant degree changes in 9 regions, but no aging-related changes, aligning with network stabilization trends in humans. Maturational decline in modularity occurred (24-29% density), mirroring human trends of decreased segregation in young adulthood, while mean distance and transitivity remained stable. Conclusion/Implications: These findings offer a foundational account of age effects on brain volume, structural brain networks, and working memory in mice, informing future work in facilitating translation between rodent models and human brain aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA