Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nat Methods ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744918

RESUMO

The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.

2.
ACS Cent Sci ; 10(3): 649-657, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559286

RESUMO

Engineering at the amino acid level is key to enhancing the properties of existing proteins in a desired manner. So far, protein engineering has been dominated by genetic approaches, which have been extremely powerful but only allow for minimal variations beyond the canonical amino acids. Chemical peptide synthesis allows the unrestricted incorporation of a vast set of unnatural amino acids with much broader functionalities, including the incorporation of post-translational modifications or labels. Here we demonstrate the potential of chemical synthesis to generate proteins in a specific conformation, which would have been unattainable by recombinant protein expression. We use recently established rapid automated flow peptide synthesis combined with solid-phase late-stage modifications to rapidly generate a set of FK506-binding protein 51 constructs bearing defined intramolecular lactam bridges. This trapped an otherwise rarely populated transient pocket-as confirmed by crystal structures-which led to an up to 39-fold improved binding affinity for conformation-selective ligands and represents a unique system for the development of ligands for this rare conformation. Overall, our results show how rapid automated flow peptide synthesis can be applied to precision protein engineering.

3.
J Pept Sci ; : e3603, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623824

RESUMO

Histone deacetylase 4 (HDAC4) contributes to gene repression by complex formation with HDAC3 and the corepressor silencing mediator for retinoid or thyroid hormone receptors (SMRT). We hypothesized that peptides derived from the class IIa specific binding site of SMRT would stabilize a specific conformation of its target protein and modulate its activity. Based on the SMRT-motif 1 (SM1) involved in the interaction of SMRT with HDAC4, we systematically developed cyclic peptides that exhibit Ki values that are 9 to 56 times lower than that of the linear SMRT peptide. The peptide macrocycles stabilize the wildtype of the catalytic domain of HDAC4 (cHDAC4) considerably better than its thermally more stable 'gain-of-function' (GOF) variant, cHDAC4-H976Y. Molecular docking and mutagenesis studies indicated that the cyclic peptides bind in a similar but not identical manner as the linear SMRT peptide to a discontinuous binding site. Ion mobility mass spectrometry showed no major changes in the protein fold upon peptide binding. Consistent with these results, preliminary hydrogen-deuterium exchange mass spectrometry measurements indicated only minor conformational changes. Taken together, the cyclic SMRT peptides most likely stabilize the apo form of cHDAC4.

4.
ACS Chem Neurosci ; 15(7): 1469-1483, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501754

RESUMO

The accumulation of amyloid plaques and increased brain redox burdens are neuropathological hallmarks of Alzheimer's disease. Altered metabolism of essential biometals is another feature of Alzheimer's, with amyloid plaques representing sites of disturbed metal homeostasis. Despite these observations, metal-targeting disease treatments have not been therapeutically effective to date. A better understanding of amyloid plaque composition and the role of the metals associated with them is critical. To establish this knowledge, the ability to resolve chemical variations at nanometer length scales relevant to biology is essential. Here, we present a methodology for the label-free, nanoscale chemical characterization of amyloid plaques within human Alzheimer's disease tissue using synchrotron X-ray spectromicroscopy. Our approach exploits a C-H carbon absorption feature, consistent with the presence of lipids, to visualize amyloid plaques selectively against the tissue background, allowing chemical analysis to be performed without the addition of amyloid dyes that alter the native sample chemistry. Using this approach, we show that amyloid plaques contain elevated levels of calcium, carbonates, and iron compared to the surrounding brain tissue. Chemical analysis of iron within plaques revealed the presence of chemically reduced, low-oxidation-state phases, including ferromagnetic metallic iron. The zero-oxidation state of ferromagnetic iron determines its high chemical reactivity and so may contribute to the redox burden in the Alzheimer's brain and thus drive neurodegeneration. Ferromagnetic metallic iron has no established physiological function in the brain and may represent a target for therapies designed to lower redox burdens in Alzheimer's disease. Additionally, ferromagnetic metallic iron has magnetic properties that are distinct from the iron oxide forms predominant in tissue, which might be exploitable for the in vivo detection of amyloid pathologies using magnetically sensitive imaging. We anticipate that this label-free X-ray imaging approach will provide further insights into the chemical composition of amyloid plaques, facilitating better understanding of how plaques influence the course of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Ferro/metabolismo , Cálcio/metabolismo
5.
Protein Sci ; 33(3): e4917, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358265

RESUMO

Human histone deacetylase 4 (HDAC4) is a key epigenetic regulator involved in a number of important cellular processes. This makes HDAC4 a promising target for the treatment of several cancers and neurodegenerative diseases, in particular Huntington's disease. HDAC4 is highly regulated by phosphorylation and oxidation, which determine its nuclear or cytosolic localization, and exerts its function through multiple interactions with other proteins, forming multiprotein complexes of varying composition. The catalytic domain of HDAC4 is known to interact with the SMRT/NCOR corepressor complex when the structural zinc-binding domain (sZBD) is intact and forms a closed conformation. Crystal structures of the HDAC4 catalytic domain have been reported showing an open conformation of HDAC4 when bound to certain ligands. Here, we investigated the relevance of this HDAC4 conformation under physiological conditions in solution. We show that proper zinc chelation in the sZBD is essential for enzyme function. Loss of the structural zinc ion not only leads to a massive decrease in enzyme activity, but it also has serious consequences for the overall structural integrity and stability of the protein. However, the Zn2+ free HDAC4 structure in solution is incompatible with the open conformation. In solution, the open conformation of HDAC4 was also not observed in the presence of a variety of structurally divergent ligands. This suggests that the open conformation of HDAC4 cannot be induced in solution, and therefore cannot be exploited for the development of HDAC4-specific inhibitors.


Assuntos
Histona Desacetilases , Zinco , Humanos , Domínio Catalítico , Ligantes , Fosforilação , Histona Desacetilases/química
6.
Cells ; 13(2)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38247831

RESUMO

Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.


Assuntos
Heterocromatina , Proteoma , Animais , Camundongos , Proteômica , Proteínas de Membrana , Encéfalo
7.
Proteomics ; 24(3-4): e2300082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37043727

RESUMO

In recent years, top-down mass spectrometry has become a widely used approach to study proteoforms; however, improving sequence coverage remains an important goal. Here, two different proteins, α-synuclein and bovine carbonic anhydrase, were subjected to top-down collision-induced dissociation (CID) after electrospray ionisation. Two high-boiling solvents, DMSO and propylene carbonate, were added to the protein solution in low concentration (2%) and the effects on the top-down fragmentation patterns of the proteins were systematically investigated. Each sample was measured in triplicate, which revealed highly reproducible differences in the top-down CID fragmentation patterns in the presence of a solution additive, even if the same precursor charge state was isolated in the quadrupole of the instrument. Further investigation supports the solution condition-dependent selective formation of different protonation site isomers as the underlying cause of these differences. Higher sequence coverage was often observed in the presence of additives, and the benefits of this approach became even more evident when datasets from different solution conditions were combined, as increases up to 35% in cleavage coverage were obtained. Overall, this approach therefore represents a promising opportunity to increase top-down fragmentation efficiency.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Animais , Bovinos , Espectrometria de Massas por Ionização por Electrospray/métodos
8.
Angew Chem Int Ed Engl ; 63(3): e202309706, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37942685

RESUMO

The FK506-binding protein 51 (FKBP51) is a promising target in a variety of disorders including depression, chronic pain, and obesity. Previous FKBP51-targeting strategies were restricted to occupation of the FK506-binding site, which does not affect core functions of FKBP51. Here, we report the discovery of the first FKBP51 proteolysis targeting chimera (PROTAC) that enables degradation of FKBP51 abolishing its scaffolding function. Initial synthesis of 220 FKBP-focused PROTACs yielded a plethora of active PROTACs for FKBP12, six for FKBP51, and none for FKBP52. Structural analysis of a binary FKBP12:PROTAC complex revealed the molecular basis for negative cooperativity. Linker-based optimization of first generation FKBP51 PROTACs led to the PROTAC SelDeg51 with improved cellular activity, selectivity, and high cooperativity. The structure of the ternary FKBP51:SelDeg51:VCB complex revealed how SelDeg51 establishes cooperativity by dimerizing FKBP51 and the von Hippel-Lindau protein (VHL) in a glue-like fashion. SelDeg51 efficiently depletes FKBP51 and reactivates glucocorticoid receptor (GR)-signalling, highlighting the enhanced efficacy of full protein degradation compared to classical FKBP51 binding.


Assuntos
Quimera de Direcionamento de Proteólise , Proteína 1A de Ligação a Tacrolimo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/química , Domínios Proteicos , Sítios de Ligação , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
9.
Proteomics ; 24(3-4): e2300354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088481

RESUMO

In recent years, there has been a tremendous evolution in the high-throughput, tandem mass spectrometry-based analysis of intact proteins, also known as top-down proteomics (TDP). Both hardware and software have developed to the point that the technique has largely entered the mainstream, and large-scale, ambitious, multi-laboratory initiatives have started to make their appearance in the literature. For this, however, more convenient and robust data sharing and reuse will be required. Walzer et al. have created TopDownApp, a customisable, open platform for visualisation and analysis of TDP data, which they hope will be a step in this direction. As they point out, other benefits of such data sharing and interoperability would include reanalysis of published datasets, as well as the prospect of using large amounts of data to train machine learning algorithms. In time, this work could prove to be a valuable resource in the move towards a future of greater TDP data findability, accessibility, interoperability and reusability.


Assuntos
Proteômica , Software , Proteômica/métodos , Algoritmos , Espectrometria de Massas em Tandem , Proteínas de Ligação a DNA
10.
JACS Au ; 3(9): 2478-2486, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37772190

RESUMO

Sulfonamides are one of the most important pharmacophores in medicinal chemistry, and sulfonamide analogues have gained substantial interest in recent years. However, the protein interactions of sulfonamides and especially of their analogues are underexplored. Using FKBP12 as a model system, we describe the synthesis of optically pure sulfenamide, sulfinamide, and sulfonimidamide analogues of a well characterized sulfonamide ligand. This allowed us to precisely determine the binding contributions of each sulfonamide oxygen atom and the consequences of nitrogen replacements. We also present high-resolution cocrystal structures of sulfonamide analogues buried in the pocket of a protein target. This revealed intimate contacts with the protein including an unprecedented hydrogen bond acceptor of sulfonimidamides. The use of sulfonamide analogues enabled new exit vectors that allowed remodeling of a subpocket in FKBP12. Our results illuminate the protein interaction potential of sulfonamides/sulfonamide analogues and will aid in their rational design.

11.
Res Sq ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37674709

RESUMO

The combination of native electrospray ionisation with top-down fragmentation in mass spectrometry allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and co-factors. While this approach is powerful, both native mass spectrometry and top-down mass spectrometry are not yet well standardised, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics (CTDP) initiated a study to develop and test protocols for native mass spectrometry combined with top-down fragmentation of proteins and protein complexes across eleven instruments in nine laboratories. The outcomes are summarised in this report to provide robust benchmarks and a valuable entry point for the scientific community.

12.
ACS Med Chem Lett ; 14(6): 777-787, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312859

RESUMO

The DNA methyltransferase 2 (DNMT2) is an RNA modifying enzyme associated with pathophysiological processes, such as mental and metabolic disorders or cancer. Although the development of methyltransferase inhibitors remains challenging, DNMT2 is not only a promising target for drug discovery, but also for the development of activity-based probes. Here, we present covalent SAH-based DNMT2 inhibitors decorated with a new type of aryl warhead. Based on a noncovalent DNMT2 inhibitor with N-benzyl substituent, the Topliss scheme was followed for optimization. The results showed that electron-deficient benzyl moieties highly increased affinity. By decorating the structures with strong electron-withdrawing moieties and leaving groups, we adjusted the electrophilicity to create covalent DNMT2 inhibitors. A 4-bromo-3-nitrophenylsulfonamide-decorated SAH derivative (80) turned out to be the most potent (IC50 = 1.2 ± 0.1 µM) and selective inhibitor. Protein mass spectrometry confirmed the covalent reaction with the catalytically active cysteine-79.

13.
J Am Soc Mass Spectrom ; 34(9): 1908-1916, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227392

RESUMO

Between 2003 and 2017, four reports were published that demonstrated the intrinsic ability of the native iron-containing proteins cytochrome c and ferritin to undergo radical-based backbone fragmentation in the gas phase without the introduction of exogenous electrons. For cytochrome c in particular, this effect has so far only been reported to occur in the ion source, preventing the in-depth study of reactions occurring after gas-phase isolation of specific precursors. Here, we report the first observation of this intrinsic native electron capture dissociation behavior after quadrupole isolation of specific charge states of the cytochrome c dimer and trimer, providing direct experimental support for key aspects of the mechanism proposed 20 years ago. Furthermore, we provide evidence that, in contrast to some earlier proposals, these oligomeric states are formed in bulk solution rather than during the electrospray ionization process and that the observed fragmentation site preferences can be rationalized through the structure and interactions within these native oligomers rather than the monomer. We also show that the observed fragmentation pattern─and indeed, whether or not fragmentation occurs─is highly sensitive to the provenance and history of the protein samples, to the extent that samples can show distinct fragmentation behavior despite behaving identically in ion mobility experiments. This rather underexplored method therefore represents an exquisitely sensitive conformational probe and will hopefully receive more attention from the biomolecular mass spectrometry community in the future.


Assuntos
Citocromos c , Elétrons , Citocromos c/química , Espectrometria de Massas/métodos , Ferritinas , Polímeros , Espectrometria de Massas por Ionização por Electrospray/métodos
14.
Essays Biochem ; 67(2): 283-300, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36468679

RESUMO

Top-down protein mass spectrometry can provide unique insights into protein sequence and structure, including precise proteoform identification and study of protein-ligand and protein-protein interactions. In contrast with the commonly applied bottom-up approach, top-down approaches do not include digestion of the protein of interest into small peptides, but instead rely on the ionization and subsequent fragmentation of intact proteins. As such, it is fundamentally the only way to fully characterize the composition of a proteoform. Here, we provide an overview of how a top-down protein mass spectrometry experiment is performed and point out recent applications from the literature to the reader. While some parts of the top-down workflow are broadly applicable, different research questions are best addressed with specific experimental designs. The most important divide is between studies that prioritize sequence information (i.e., proteoform identification) versus structural information (e.g., conformational studies, or mapping protein-protein or protein-ligand interactions). Another important consideration is whether to work under native or denaturing solution conditions, and the overall complexity of the sample also needs to be taken into account, as it determines whether (chromatographic) separation is required prior to MS analysis. In this review, we aim to provide enough information to support both newcomers and more experienced readers in the decision process of how to answer a potential research question most efficiently and to provide an overview of the methods that exist to answer these questions.


Assuntos
Espectrometria de Massas , Proteínas , Espectrometria de Massas/métodos , Humanos , Animais , Proteínas/química , Proteínas/isolamento & purificação , Proteômica , Cromatografia Líquida , Eletroforese Capilar , Conformação Proteica
15.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576105

RESUMO

In order to understand protein structure to a sufficient extent for, e.g., drug discovery, no single technique can provide satisfactory information on both the lowest-energy conformation and on dynamic changes over time (the 'four-dimensional' protein structure). Instead, a combination of complementary techniques is required. Mass spectrometry methods have shown promise in addressing protein dynamics, but often rely on the use of high-end commercial or custom instruments. Here, we apply well-established chemistry to conformation-sensitive oxidative protein labelling on a timescale of a few seconds, followed by analysis through a routine protein analysis workflow. For a set of model proteins, we show that site selectivity of labelling can indeed be rationalised in terms of known structural information, and that conformational changes induced by ligand binding are reflected in the modification pattern. In addition to conventional bottom-up analysis, further insights are obtained from intact mass measurement and native mass spectrometry. We believe that this method will provide a valuable and robust addition to the 'toolbox' of mass spectrometry researchers studying higher-order protein structure.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Proteínas/química , Álcool Desidrogenase/química , Sítios de Ligação , Heme/química , Modelos Moleculares , Mioglobina/química , Oxirredução , Peptídeos/química , Conformação Proteica , Estabilidade Proteica , Proteína 1A de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/química
16.
Chem Commun (Camb) ; 57(62): 7645-7648, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34250984

RESUMO

The novel Pt(iv) complex trans,trans-[Pt(N3)2(Py)2(OH)(OCO-(PEG)2-NHCSNH-Ph-NCS)] (Pt4) conjugates to the side chain of lysine amino acids in proteins under mild conditions. Reaction with myoglobin generated a bioconjugate that was stable in the dark, but released a Pt(iv) prodrug upon visible light irradiation. A similar procedure was used to conjugate Pt4 to the antibody trastuzumab, resulting in the first photoactivatable Pt(iv)-antibody conjugate, demonstrating potential for highly selective cancer phototherapy.

17.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108207

RESUMO

The chemistry of copper and iron plays a critical role in normal brain function. A variety of enzymes and proteins containing positively charged Cu+, Cu2+, Fe2+, and Fe3+ control key processes, catalyzing oxidative metabolism and neurotransmitter and neuropeptide production. Here, we report the discovery of elemental (zero-oxidation state) metallic Cu0 accompanying ferromagnetic elemental Fe0 in the human brain. These nanoscale biometal deposits were identified within amyloid plaque cores isolated from Alzheimer's disease subjects, using synchrotron x-ray spectromicroscopy. The surfaces of nanodeposits of metallic copper and iron are highly reactive, with distinctly different chemical and magnetic properties from their predominant oxide counterparts. The discovery of metals in their elemental form in the brain raises new questions regarding their generation and their role in neurochemistry, neurobiology, and the etiology of neurodegenerative disease.

18.
Chem Commun (Camb) ; 57(1): 69-72, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33337460

RESUMO

The stable complex [bis(toluene-3,4-dithiolato)copper(iii)][NEt3H] has been synthesised and characterised as a square-planar Cu(iii) complex by X-ray photoelectron spectroscopy, cyclic voltammetry and DFT calculations. Intriguingly, when fragmented in FTICR-MS, an unusual [(toluene-3,4-dithiolate)Cu(iii)(peroxide)]- complex is formed by reaction with oxygen. Natural 1,2-dithiolenes known to bind molybdenum might stabilise Cu(iii) in vivo.

19.
J Am Soc Mass Spectrom ; 32(1): 364-372, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33237779

RESUMO

One of the main characteristics of biomolecular ions in mass spectrometry is their net charge, and a range of approaches exist to either increase or decrease this quantity in the gas phase. In the context of small molecules, it is well known that, in addition to the charge state, the charge site also has a profound effect on an ion's gas-phase behavior; however, this effect has been far less explored for peptides and intact proteins. Methods exist to determine charge sites of protein ions, and others have observed that the interplay of electrostatic repulsion and inherent basicity leads to different sites gaining or losing a charge depending on the total net charge. Here, we report two distinct protonation site isomers ("protomers") of α-synuclein occurring at the same charge state. The protomers showed important differences in their gas-phase fragmentation behavior and were furthermore distinguishable by ion mobility spectrometry. One protomer was produced under standard electrospray conditions, while the other was observed after addition of 10% dimethyl sulfoxide to the protein solution. Charge sites for both protomers were determined using ultraviolet photodissociation.

20.
Life (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266184

RESUMO

In recent years, there has been a growing understanding that a significant fraction of the eukaryotic proteome is intrinsically disordered, and that these conformationally dynamic proteins play a myriad of vital biological roles in both normal and pathological states. In this review, selected examples of intrinsically disordered proteins are highlighted, with particular attention for a few which are relevant in neurological disorders and in viral infection. Next, the underlying causes for the intrinsic disorder are discussed, along with computational methods used to predict whether a given amino acid sequence is likely to adopt a folded or unfolded state in the solution. Finally, biophysical methods for the analysis of intrinsically disordered proteins will be discussed, as well as the unique challenges they pose in this context due to their highly dynamic nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA