Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674051

RESUMO

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.


Assuntos
Oryza , Polissacarídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Oryza/metabolismo , Oryza/genética , Oryza/virologia , Polissacarídeos/metabolismo , Glicosilação , Humanos , SARS-CoV-2/metabolismo , Domínios Proteicos , Ligação Proteica , Plantas Geneticamente Modificadas/metabolismo , COVID-19/virologia , COVID-19/metabolismo
2.
Biomolecules ; 13(10)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37892165

RESUMO

Laminarans are of interest because they have been shown to induce various immune responses in animals and plants. These ß-D-glucans differ from each other by their branching rate, which is possibly responsible for their biological activities. In the present study, we characterized a laminaran fraction extracted from Laminaria hyperborea and named LAM2 using sugar composition and structural analyses (NMR). Then, we evaluated its activity as a potential plant elicitor in vitro on tomato seedlings using gene expression analysis and cell wall immunofluorescence labeling. Our study showed that LAM2 isolated from L. hyperborea is a succinylated laminaran which significantly enhanced the plant defense of tomato seedlings and induced cell wall modifications, suggesting a higher elicitor activity than the laminaran standard extracted from Laminaria digitata.


Assuntos
Glucanos , Solanum lycopersicum , Glucanos/química , Solanum lycopersicum/imunologia
3.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768855

RESUMO

Glycan metabolic engineering is a powerful tool for studying the glycosylation in living plant cells. The use of modified monosaccharides such as deoxy or fluorine-containing glycosides has been reported as a powerful pharmacological approach for studying the carbohydrate metabolism. 1,3,4-tri-O-acetyl-2-fluoro-l-fucose (2F-Fuc) is a potent inhibitor of the plant cell elongation. After feeding plant seedlings with 2F-Fuc, this monosaccharide derivative is deacetylated and converted by the endogenous metabolic machinery into the corresponding nucleotide-sugar, which then efficiently inhibits Golgi-localized fucosyltransferases. Among plant cell wall polymers, defects in the fucosylation of the pectic rhamnogalacturonan-II cause a decrease in RG-II dimerization, which in turn induce the arrest of the cell elongation. In order to perform the inhibition of the cell elongation process in a spatio-temporal manner, we synthesized a caged 3,4-di-O-acetyl-1-hydroxy-2-fluoro-l-fucose (1-OH-2F-Fuc) derivative carrying a photolabile ortho-nitrobenzyl alcohol function at the anomeric position: 3,4-di-O-acetyl-1-ortho-nitrobenzyl-2-fluoro-l-fucose (2F-Fuc-NB). The photorelease of the trapped 1-OH-2F-Fuc was performed under a 365 nm LED illumination. We demonstrated that the in planta elimination by photoexcitation of the photolabile group releases free 2F-Fuc in plant cells, which in turn inhibits in a dose-dependent manner and, reversibly, the root cell elongation.


Assuntos
Fucose , Fucosiltransferases , Fucose/metabolismo , Preparações de Ação Retardada , Fucosiltransferases/metabolismo , Glicosilação , Monossacarídeos
4.
Front Plant Sci ; 14: 1325162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239207

RESUMO

The COVID-19 pandemic has underscored the need for rapid and cost-effective diagnostic tools. Serological tests, particularly those measuring antibodies targeting the receptor-binding domain (RBD) of the virus, play a pivotal role in tracking infection dynamics and vaccine effectiveness. In this study, we aimed to develop a simple enzyme-linked immunosorbent assay (ELISA) for measuring RBD-specific antibodies, comparing two plant-based platforms for diagnostic reagent production. We chose to retain RBD in the endoplasmic reticulum (ER) to prevent potential immunoreactivity issues associated with plant-specific glycans. We produced ER-retained RBD in two plant systems: a stable transformation of BY-2 plant cell culture (BY2-RBD) and a transient transformation in Nicotiana benthamiana using the MagnICON system (NB-RBD). Both systems demonstrated their suitability, with varying yields and production timelines. The plant-made proteins revealed unexpected differences in N-glycan profiles, with BY2-RBD displaying oligo-mannosidic N-glycans and NB-RBD exhibiting a more complex glycan profile. This difference may be attributed to higher recombinant protein synthesis in the N. benthamiana system, potentially overloading the ER retention signal, causing some proteins to traffic to the Golgi apparatus. When used as diagnostic reagents in ELISA, BY2-RBD outperformed NB-RBD in terms of sensitivity, specificity, and correlation with a commercial kit. This discrepancy may be due to the distinct glycan profiles, as complex glycans on NB-RBD may impact immunoreactivity. In conclusion, our study highlights the potential of plant-based systems for rapid diagnostic reagent production during emergencies. However, transient expression systems, while offering shorter timelines, introduce higher heterogeneity in recombinant protein forms, necessitating careful consideration in serological test development.

5.
Mar Drugs ; 20(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354980

RESUMO

Severe acute respiratory syndrome-Coronavirus 2 (SARS-CoV-2) can infect various human organs, including the respiratory, circulatory, nervous, and gastrointestinal ones. The virus is internalized into human cells by binding to the human angiotensin-converting enzyme 2 (ACE2) receptor through its spike protein (S-glycoprotein). As S-glycoprotein is required for the attachment and entry into the human target cells, it is the primary mediator of SARS-CoV-2 infectivity. Currently, this glycoprotein has received considerable attention as a key component for the development of antiviral vaccines or biologics against SARS-CoV-2. Moreover, since the ACE2 receptor constitutes the main entry route for the SARS-CoV-2 virus, its soluble form could be considered as a promising approach for the treatment of coronavirus disease 2019 infection (COVID-19). Both S-glycoprotein and ACE2 are highly glycosylated molecules containing 22 and 7 consensus N-glycosylation sites, respectively. The N-glycan structures attached to these specific sites are required for the folding, conformation, recycling, and biological activity of both glycoproteins. Thus far, recombinant S-glycoprotein and ACE2 have been produced primarily in mammalian cells, which is an expensive process. Therefore, benefiting from a cheaper cell-based biofactory would be a good value added to the development of cost-effective recombinant vaccines and biopharmaceuticals directed against COVID-19. To this end, efficient protein synthesis machinery and the ability to properly impose post-translational modifications make microalgae an eco-friendly platform for the production of pharmaceutical glycoproteins. Notably, several microalgae (e.g., Chlamydomonas reinhardtii, Dunaliella bardawil, and Chlorella species) are already approved by the U.S. Food and Drug Administration (FDA) as safe human food. Because microalgal cells contain a rigid cell wall that could act as a natural encapsulation to protect the recombinant proteins from the aggressive environment of the stomach, this feature could be used for the rapid production and edible targeted delivery of S-glycoprotein and soluble ACE2 for the treatment/inhibition of SARS-CoV-2. Herein, we have reviewed the pathogenesis mechanism of SARS-CoV-2 and then highlighted the potential of microalgae for the treatment/inhibition of COVID-19 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Chlorella , Microalgas , Animais , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Microalgas/metabolismo , Chlorella/metabolismo , Peptidil Dipeptidase A/química , Ligação Proteica , Glicoproteínas/metabolismo , Mamíferos/metabolismo
6.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014368

RESUMO

The emergence of the SARS-CoV-2 coronavirus pandemic in China in late 2019 led to the fast development of efficient therapeutics. Of the major structural proteins encoded by the SARS-CoV-2 genome, the SPIKE (S) protein has attracted considerable research interest because of the central role it plays in virus entry into host cells. Therefore, to date, most immunization strategies aim at inducing neutralizing antibodies against the surface viral S protein. The SARS-CoV-2 S protein is heavily glycosylated with 22 predicted N-glycosylation consensus sites as well as numerous mucin-type O-glycosylation sites. As a consequence, O- and N-glycosylations of this viral protein have received particular attention. Glycans N-linked to the S protein are mainly exposed at the surface and form a shield-masking specific epitope to escape the virus antigenic recognition. In this work, the N-glycosylation status of the S protein within virus-like particles (VLPs) produced in Nicotiana benthamiana (N. benthamiana) was investigated using a glycoproteomic approach. We show that 20 among the 22 predicted N-glycosylation sites are dominated by complex plant N-glycans and one carries oligomannoses. This suggests that the SARS-CoV-2 S protein produced in N. benthamiana adopts an overall 3D structure similar to that of recombinant homologues produced in mammalian cells.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Glicosilação , Humanos , Mamíferos/metabolismo , Polissacarídeos/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Nicotiana/genética , Nicotiana/metabolismo , Vírion
7.
Plant J ; 110(3): 916-924, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35165972

RESUMO

Protein tracking in living plant cells has become routine with the emergence of reporter genes encoding fluorescent tags. Unfortunately, this imaging strategy is not applicable to glycans because they are not directly encoded by the genome. Indeed, complex glycans result from sequential additions and/or removals of monosaccharides by the glycosyltransferases and glycosidases of the cell's biosynthetic machinery. Currently, the imaging of cell wall polymers mainly relies on the use of antibodies or dyes that exhibit variable specificities. However, as immunolocalization typically requires sample fixation, it does not provide access to the dynamics of living cells. The development of click chemistry in plant cell wall biology offers an alternative for live-cell labeling. It consists of the incorporation of a carbohydrate containing a bio-orthogonal chemical reporter into the target polysaccharide using the endogenous biosynthetic machinery of the cell. Once synthesized and deposited in the cell wall, the polysaccharide containing the analog monosaccharide is covalently coupled to an exogenous fluorescent probe. Here, we developed a metabolic click labeling approach which allows the imaging of cell wall polysaccharides in living and elongating cells without affecting cell viability. The protocol was established using the pollen tube, a useful model to follow cell wall dynamics due to its fast and tip-polarized growth, but was also successfully tested on Arabidopsis root cells and root hairs. This method offers the possibility of imaging metabolically incorporated sugars of viable and elongating cells, allowing the study of the long-term dynamics of labeled extracellular polysaccharides.


Assuntos
Arabidopsis , Pectinas , Arabidopsis/metabolismo , Parede Celular/metabolismo , Química Click/métodos , Pectinas/metabolismo , Polissacarídeos/metabolismo
8.
Biol Rev Camb Philos Soc ; 97(2): 732-748, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34873817

RESUMO

N-glycosylation is an important post-translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N-glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N-glycan processing and further describe recent findings regarding the diversity of N-glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N-glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N-glycosylation are highlighted, especially the regulation of the biosynthesis of complex-type N-glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.


Assuntos
Eucariotos , Complexo de Golgi , Retículo Endoplasmático/metabolismo , Eucariotos/genética , Glicosilação , Complexo de Golgi/metabolismo , Polissacarídeos/metabolismo
9.
Carbohydr Polym ; 259: 117660, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33673983

RESUMO

Microalgae are emerging production systems for recombinant proteins like monoclonal antibodies. In this context, the characterization of the host cell N-glycosylation machinery and of the microalgae-made biopharmaceuticals, which are mainly glycoprotein-based products, requires efficient analytical methodologies dedicated to the profiling of the N-glycans. Herein, in order to gain knowledge regarding its N-glycosylation pathway, we profile the protein N-linked oligosaccharides isolated from the diatom Phaeodactylum tricornutum that has been used successfully to produce functional monoclonal antibodies. The combination of ion mobility spectrometry-mass Spectrometry and electrospray ionization-multistage tandem mass spectrometry allows us to decipher the detailed structure of the oligomannoside isomers and to demonstrate that the processing of the oligomannosides N-linked to proteins occurs in this diatom as reported in mammals. Therefore, P. tricornutum synthesizes human-like oligomannosides in contrast to other microalgae species. This represent an advantage as an alternative ecofriendly expression system to produce biopharmaceuticals used for human therapy.


Assuntos
Diatomáceas/metabolismo , Oligossacarídeos/química , Proteínas de Algas/metabolismo , Glicosilação , Espectrometria de Mobilidade Iônica , Isomerismo , Oligossacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
10.
Front Plant Sci ; 11: 609993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391324

RESUMO

The term microalga refers to various unicellular and photosynthetic organisms representing a polyphyletic group. It gathers numerous species, which can be found in cyanobacteria (i.e., Arthrospira) as well as in distinct eukaryotic groups, such as Chlorophytes (i.e., Chlamydomonas or Chlorella) and Heterokonts (i.e., diatoms). This phylogenetic diversity results in an extraordinary variety of metabolic pathways, offering large possibilities for the production of natural compounds like pigments or lipids that can explain the ever-growing interest of industrials for these organisms since the middle of the last century. More recently, several species have received particular attention as biofactories for the production of recombinant proteins. Indeed, microalgae are easy to grow, safe and cheap making them attractive alternatives as heterologous expression systems. In this last scope of applications, the glycosylation capacity of these organisms must be considered as this post-translational modification of proteins impacts their structural and biological features. Although these mechanisms are well known in various Eukaryotes like mammals, plants or insects, only a few studies have been undertaken for the investigation of the protein glycosylation in microalgae. Recently, significant progresses have been made especially regarding protein N-glycosylation, while O-glycosylation remain poorly known. This review aims at summarizing the recent data in order to assess the state-of-the art knowledge in glycosylation processing in microalgae.

11.
Plant J ; 102(2): 230-245, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31777161

RESUMO

Nowadays, little information is available regarding the N-glycosylation pathway in the green microalga Chlamydomonas reinhardtii. Recent investigation demonstrated that C. reinhardtii synthesizes linear oligomannosides. Maturation of these oligomannosides results in N-glycans that are partially methylated and carry one or two xylose residues. One xylose residue was demonstrated to be a core ß(1,2)-xylose. Recently, N-glycoproteomic analysis performed on glycoproteins secreted by C. reinhardtii demonstrated that the xylosyltransferase A (XTA) was responsible for the addition of the core ß(1,2)-xylose. Furthermore, another xylosyltransferase candidate named XTB was suggested to be involved in the xylosylation in C. reinhardtii. In the present study, we focus especially on the characterization of the structures of the xylosylated N-glycans from C. reinhardtii taking advantage of insertional mutants of XTA and XTB, and of the XTA/XTB double-mutant. The combination of mass spectrometry approaches allowed us to identify the major N-glycan structures bearing one or two xylose residues. They confirm that XTA is responsible for the addition of the core ß(1,2)-xylose, whereas XTB is involved in the addition of the xylose residue onto the linear branch of the N-glycan as well as in the partial addition of the core ß(1,2)-xylose suggesting that this transferase exhibits a low substrate specificity. Analysis of the double-mutant suggests that an additional xylosyltransferase is involved in the xylosylation process in C. reinhardtii. Additional putative candidates have been identified in the C. reinhardtii genome. Altogether, these results pave the way for a better understanding of the C. reinhardtii N-glycosylation pathway.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Pentosiltransferases/metabolismo , Proteínas de Algas/genética , Sequência de Aminoácidos , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Glicoproteínas/química , Glicosilação , Espectrometria de Massas , Mutagênese Insercional , Pentosiltransferases/genética , Filogenia , Polissacarídeos/química , Alinhamento de Sequência , Xilose/química , UDP Xilose-Proteína Xilosiltransferase
12.
Front Plant Sci ; 10: 610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164895

RESUMO

Although Phaeodactylum tricornutum is gaining importance in plant molecular farming for the production of high-value molecules such as monoclonal antibodies, little is currently known about key cell metabolism occurring in this diatom such as protein glycosylation. For example, incorporation of fucose residues in the glycans N-linked to protein in P. tricornutum is questionable. Indeed, such epitope has previously been found on N-glycans of endogenous glycoproteins in P. tricornutum. Meanwhile, the potential immunogenicity of the α(1,3)-fucose epitope present on plant-derived biopharmaceuticals is still a matter of debate. In this paper, we have studied molecular actors potentially involved in the fucosylation of the glycoproteins in P. tricornutum. Based on sequence similarities, we have identified a putative P. tricornutum GDP-L-fucose transporter and three fucosyltransferase (FuT) candidates. The putative P. tricornutum GDP-L-fucose transporter coding sequence was expressed in the Chinese Hamster Ovary (CHO)-gmt5 mutant lacking its endogenous GDP-L-fucose transporter activity. We show that the P. tricornutum transporter is able to rescue the fucosylation of proteins in this CHO-gmt5 mutant cell line, thus demonstrating the functional activity of the diatom transporter and its appropriate Golgi localization. In addition, we overexpressed one of the three FuT candidates, namely the FuT54599, in P. tricornutum and investigated its localization within Golgi stacks of the diatom. Our findings show that overexpression of the FuT54599 leads to a significant increase of the α(1,3)-fucosylation of the diatom endogenous glycoproteins.

13.
Carbohydr Polym ; 208: 180-190, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658789

RESUMO

Drought-induced dehydration of vegetative tissues in lycopods affects growth and survival. Different species of Selaginella have evolved a series of specialized mechanisms to tolerate desiccation in vegetative tissues in response to water stress. In the present study, we report on the structural characterization of the leaf cell wall of the desiccation-tolerant species S. involvens and two desiccation-sensitive species, namely S. kraussiana and S. moellendorffii. Isolated cell walls from hydrated and desiccated leaves of each species were fractionated and the resulting oligosaccharide fragments were analyzed to determine their structural features. Our results demonstrate that desiccation induces substantial modifications in the cell wall composition and structure. Altogether, these data highlight the fact that structural remodeling of cell wall hemicellulosic polysaccharides including XXXG-rich xyloglucan, arabinoxylan and acetylated galactomannan is an important process in order to mitigate desiccation stress in Selaginella.


Assuntos
Parede Celular/química , Dessecação , Polissacarídeos/química , Selaginellaceae/química
14.
Plant Biotechnol J ; 17(2): 505-516, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30058762

RESUMO

The Brassica rapa hairy root based expression platform, a turnip hairy root based expression system, is able to produce human complex glycoproteins such as the alpha-L-iduronidase (IDUA) with an activity similar to the one produced by Chinese Hamster Ovary (CHO) cells. In this article, a particular attention has been paid to the N- and O-glycosylation that characterize the alpha-L-iduronidase produced using this hairy root based system. This analysis showed that the recombinant protein is characterized by highly homogeneous post translational profiles enabling a strong batch to batch reproducibility. Indeed, on each of the 6 N-glycosylation sites of the IDUA, a single N-glycan composed of a core Man3 GlcNAc2 carrying one beta(1,2)-xylose and one alpha(1,3)-fucose epitope (M3XFGN2) was identified, highlighting the high homogeneity of the production system. Hydroxylation of proline residues and arabinosylation were identified during O-glycosylation analysis, still with a remarkable reproducibility. This platform is thus positioned as an effective and consistent expression system for the production of human complex therapeutic proteins.


Assuntos
Brassica rapa/enzimologia , Iduronidase/metabolismo , Animais , Brassica rapa/genética , Células CHO , Cricetulus , Epitopos/imunologia , Fucose/imunologia , Glicosilação , Humanos , Iduronidase/química , Iduronidase/genética , Manose/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Proteínas Recombinantes , Reprodutibilidade dos Testes , Transgenes , Xilose/imunologia
15.
Plant Methods ; 14: 107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534192

RESUMO

BACKGROUND: Protein N-glycosylation is initiated within the endoplasmic reticulum through the synthesis of a lipid-linked oligosaccharides (LLO) precursor. This precursor is then transferred en bloc on neo-synthesized proteins through the action of the oligosaccharyltransferase giving birth to glycoproteins. The N-linked glycans bore by the glycoproteins are then processed into oligomannosides prior to the exit of the glycoproteins from the endoplasmic reticulum and its entrance into the Golgi apparatus. In this compartment, the N-linked glycans are further maturated in complex type N-glycans. This process has been well studied in a lot of eukaryotes including higher plants. In contrast, little information regarding the LLO precursor and synthesis of N-linked glycans is available in microalgae. METHODS: In this report, a user-friendly extraction method combining microsomal enrichment and solvent extractions followed by purification steps is described. This strategy is aiming to extract LLO precursor from microalgae. Then, the oligosaccharide moiety released from the extracted LLO were analyzed by multistage tandem mass spectrometry in two models of microalgae namely the green microalgae, Chlamydomonas reinhardtii and the diatom, Phaeodactylum tricornutum. RESULTS: The validity of the developed method was confirmed by the analysis of the oligosaccharide structures released from the LLO of two xylosyltransferase mutants of C. reinhardtii confirming that this green microalga synthesizes a linear Glc3Man5GlcNAc2 identical to the one of the wild-type cells. In contrast, the analysis of the oligosaccharide released from the LLO of the diatom P. tricornutum demonstrated for the first time a Glc2Man9GlcNAc2 structure. CONCLUSION: The method described in this article allows the fast, non-radioactive and reliable multistage tandem mass spectrometry characterization of oligosaccharides released from LLO of microalgae including the ones belonging to the Phaeodactylaceae and Chlorophyceae classes, respectively. The method is fully adaptable for extracting and characterizing the LLO oligosaccharide moiety from microalgae belonging to other phyla.

16.
Sci Rep ; 8(1): 14340, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254372

RESUMO

Phaeodactylum tricornutum is the most studied diatom encountered principally in coastal unstable environments. It has been hypothesized that the great adaptability of P. tricornutum is probably due to its pleomorphism. Indeed, P. tricornutum is an atypical diatom since it can display three morphotypes: fusiform, triradiate and oval. Currently, little information is available regarding the physiological significance of this morphogenesis. In this study, we adapted P. tricornutum Pt3 strain to obtain algal culture particularly enriched in one dominant morphotype: fusiform, triradiate or oval. These cultures were used to run high-throughput RNA-Sequencing. The whole mRNA transcriptome of each morphotype was determined. Pairwise comparisons highlighted biological processes and molecular functions which are up- and down-regulated. Finally, intersection analysis allowed us to identify the specific features from the oval morphotype which is of particular interest as it is often described to be more resistant to stresses. This study represent the first transcriptome wide characterization of the three morphotypes from P. tricornutum performed on cultures specifically enriched issued from the same Pt3 strain. This work represents an important step for the understanding of the morphogenesis in P. tricornutum and highlights the particular features of the oval morphotype.


Assuntos
Diatomáceas/genética , Fenótipo , Análise de Sequência de RNA , Diatomáceas/fisiologia , Perfilação da Expressão Gênica , Estresse Fisiológico
17.
Biotechnol J ; 13(4): e1700496, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29194986

RESUMO

Microalgae are unicellular eukaryotic organisms which represent an emerging alternative to other cell biofactories commonly used to produce monoclonal antibodies. Microalgae display several biotechnological advantages such as their rapid growth rate and their phototrophic lifestyle allowing low production costs as protein expression is solar-fueled. Recently, a fully assembled recombinant IgG antibody directed against Hepatitis B surface antigen is produced and secreted in the culture medium of the diatom Phaeodactylum tricornutum. A biochemical characterization of this recombinant antibody demonstrated that the Asn-297 is N-glycosylated by oligomannosides. In the immune system, antibodies interact with effector molecules and cells through their Fc part and the recognition of Fcγ receptors (FcγR) which are important for inducing phagocytosis of opsonized microbes. Interactions between IgG and FcγR are influenced by the N-glycan structures present on the Asn-297. In this study, the authors characterized the binding capacity of the anti-hepatitis B recombinant IgG produced in P. tricornutum to two human Fcγ receptors (FcγRI and IIIa) using a cellular binding assay and surface plasmon resonance (SPR). This allowed us to demonstrate that the alga-made antibody is able to bind FcγRI with a reduced affinity and engages FcyRIIIa with 3-times higher affinity compared to a control human IgG1.


Assuntos
Anticorpos Monoclonais/metabolismo , Diatomáceas/crescimento & desenvolvimento , Antígenos de Superfície da Hepatite B/imunologia , Receptores de IgG/metabolismo , Asparagina/química , Meios de Cultura/química , Diatomáceas/metabolismo , Glicosilação , Células HEK293 , Humanos , Oligossacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Células THP-1
18.
EMBO Rep ; 18(11): 1935-1946, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28928140

RESUMO

Selenoprotein T (SelT) is a recently characterized thioredoxin-like protein whose expression is very high during development, but is confined to endocrine tissues in adulthood where its function is unknown. We report here that SelT is required for adaptation to the stressful conditions of high hormone level production in endocrine cells. Using immunofluorescence and TEM immunogold approaches, we find that SelT is expressed at the endoplasmic reticulum membrane in all hormone-producing pituitary cell types. SelT knockdown in corticotrope cells promotes unfolded protein response (UPR) and ER stress and lowers endoplasmic reticulum-associated protein degradation (ERAD) and hormone production. Using a screen in yeast for SelT-membrane protein interactions, we sort keratinocyte-associated protein 2 (KCP2), a subunit of the protein complex oligosaccharyltransferase (OST). In fact, SelT interacts not only with KCP2 but also with other subunits of the A-type OST complex which are depleted after SelT knockdown leading to POMC N-glycosylation defects. This study identifies SelT as a novel subunit of the A-type OST complex, indispensable for its integrity and for ER homeostasis, and exerting a pivotal adaptive function that allows endocrine cells to properly achieve the maturation and secretion of hormones.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Corticotrofos/metabolismo , Degradação Associada com o Retículo Endoplasmático , Hexosiltransferases/genética , Proteínas de Membrana/genética , Selenoproteínas/genética , Transdução de Sinais , Hormônio Adrenocorticotrópico/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Corticotrofos/citologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Edição de Genes , Regulação da Expressão Gênica , Glicosilação , Hexosiltransferases/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Microssomos/metabolismo , Hipófise/citologia , Hipófise/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno , Selenoproteínas/antagonistas & inibidores , Selenoproteínas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
19.
Sci Rep ; 7(1): 10156, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860654

RESUMO

Eukaryotic N-glycosylation pathways are dependent of N-acetylglucosaminyltransferase I (GnTI), a key glycosyltransferase opening the door to the formation of complex-type N-glycans by transferring a N-acetylglucosamine residue onto the Man5GlcNAc2 intermediate. In contrast, glycans N-linked to Chlamydomonas reinhardtii proteins arise from a GnTI-independent Golgi processing of oligomannosides giving rise to Man5GlcNAc2 substituted eventually with one or two xylose(s). Here, complementation of C. reinhardtii with heterologous GnTI was investigated by expression of GnTI cDNAs originated from Arabidopsis and the diatom Phaeodactylum tricornutum. No modification of the N-glycans was observed in the GnTI transformed cells. Consequently, the structure of the Man5GlcNAc2 synthesized by C. reinhardtii was reinvestigated. Mass spectrometry analyses combined with enzyme sequencing showed that C. reinhardtii proteins carry linear Man5GlcNAc2 instead of the branched structure usually found in eukaryotes. Moreover, characterization of the lipid-linked oligosaccharide precursor demonstrated that C. reinhardtii exhibit a Glc3Man5GlcNAc2 dolichol pyrophosphate precursor. We propose that this precursor is then trimmed into a linear Man5GlcNAc2 that is not substrate for GnTI. Furthermore, cells expressing GnTI exhibited an altered phenotype with large vacuoles, increase of ROS production and accumulation of starch granules, suggesting the activation of stress responses likely due to the perturbation of the Golgi apparatus.


Assuntos
Chlamydomonas reinhardtii/genética , Diatomáceas/genética , N-Acetilglucosaminiltransferases/genética , Proteínas de Plantas/genética , Chlamydomonas reinhardtii/enzimologia , Diatomáceas/enzimologia , Glicosilação , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
20.
Planta ; 246(6): 1109-1124, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28815300

RESUMO

MAIN CONCLUSION: A chemical screen of plant-derived compounds identified holaphyllamine, a steroid, able to trigger defense responses in Arabidopsis thaliana and improve resistance against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. A chemical screen of 1600 plant-derived compounds was conducted and allowed the identification of a steroid able to activate defense responses in A. thaliana at a concentration of 1 µM without altering growth. The identified compound is holaphyllamine (HPA) whose chemical structure is similar to steroid pregnanes of mammals. Our data show that HPA, which is not constitutively present in A. thaliana, is able to trigger the formation of reactive oxygen species, deposition of callose and expression of several pathogenesis-related genes of the salicylic and jasmonic acid pathways. In addition, the results show that pre-treatment of A. thaliana seedlings with HPA before infection with the pathogenic bacterium Pseudomonas syringae pv tomato DC3000 results in a significant reduction of symptoms (i.e., reduction of bacterial colonies). Using A. thaliana mutants, we have found that the activation of defense responses by HPA does not depend on BRI1/BAK1 receptor kinases. Finally, a structure/function study reveals that the minimal structure required for activity is a 5-pregnen-20-one steroid with an equatorial nucleophilic group in C-3. Together, these findings demonstrate that HPA can activate defense responses that lead to improved resistance against bacterial infection in A. thaliana.


Assuntos
Arabidopsis/efeitos dos fármacos , Resistência à Doença , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fitosteróis/farmacologia , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células Cultivadas , Ciclopentanos/metabolismo , Glucanos/metabolismo , Mutação , Oxilipinas/metabolismo , Fitosteróis/química , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos , Ácido Salicílico/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Bibliotecas de Moléculas Pequenas , Nicotiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA